Ở bài 1.a) Bạn ghi thêm điều kiện \(x\ne1\)nhé.
Bài 1.b) x là số nguyên nên khỏi cần ghi thêm điều kiện cho x. ^^
a)\(M=\frac{x^3-2x^2+3x+3}{x-1}=\frac{\left(x^3-3x^2+3x-1\right)+\left(x^2-2x+1\right)+\left(2x+3\right)}{x-1}=\frac{\left(x-1\right)^3+\left(x-1\right)^2+2\left(x-1\right)+5}{x-1}=\left(x-1\right)^2+\left(x-1\right)+2+\frac{5}{x-1}\)
Vì x nhận giá trị nguyên nên để M là số nguyên thì \(x-1\inƯ\left(5\right)\)
\(\Rightarrow x-1\in\left\{-5;-1;1;5\right\}\)
\(\Rightarrow x\in\left\{-4;0;2;6\right\}\)
b) \(N=\frac{2x^3-5x^2+8x+8}{2x-1}=\frac{x^2\left(2x-1\right)-\left(4x^2-4x+1\right)+2\left(2x-1\right)+11}{2x-1}=x^2-\left(2x-1\right)+2+\frac{11}{2x-1}\)
Đến đây bạn làm tương tự câu a) nhé ^^
Bài 2 :
a) \(P=\frac{3x^2+3x+17}{x^2-x+5}=\frac{-2\left(x^2-4x+4\right)+5\left(x^2-x+5\right)}{x^2-x+5}=\frac{-2\left(x-2\right)^2}{x^2-x+5}+5\le5\)
Vậy Max P = 5 <=> x = 2
b) \(Q=\frac{x^2+3x+4}{x^2+3x+5}=\frac{11\left(x^2+3x+4\right)}{11\left(x^2+3x+5\right)}=\frac{\left(4x^2+12x+9\right)+7\left(x^2+3x+5\right)}{11\left(x^2+3x+5\right)}=\frac{\left(2x+3\right)^2}{11\left(x^2+2x+5\right)}+\frac{7}{11}\ge\frac{7}{11}\)Vậy Min Q = \(\frac{7}{11}\Leftrightarrow x=-\frac{3}{2}\)