\(B=\frac{\frac{2008}{2011}+\frac{2009}{2010}+\frac{2010}{2009}+\frac{2011}{2008}+\frac{2012}{503}}{\frac{1}{2008}+\frac{1}{2009}+\frac{1}{2010}+\frac{1}{2011}}\)
So sánh:A=\(\frac{2009^{2008}+1}{2009^{2009}+1}\)với B=\(\frac{2009^{2009}+1}{2009^{2010}+1}\)
A=\(\frac{2006}{2007}-\frac{2007}{2008}+\frac{2008}{2009}-\frac{2009}{2010}\)
B=\(\frac{-1}{2006.2007}-\frac{1}{2008.2009}\)
So sánh A và B
A= \(\frac{10^{1992}+1}{10^{1991}+1}\)
B=\(\frac{10^{1993}+1}{10^{1992}+1}\)
1. \(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}+\frac{1}{2^{100}}+\frac{1}{2^{100}}\)
2. So sánh: \(\dfrac{2008}{2009}+\dfrac{2009}{2010}\) và \(\dfrac{2008+2009}{2009+2010}\)
So sánh A= \(\frac{10^{1992}+1}{10^{1991}+1}\) và B =\(\frac{10^{1993}+1}{10^{1992}+1}\)
\(B=\frac{2009-\frac{2009}{2001}-\frac{2009}{2002}-\frac{2009}{2003}-\frac{2009}{2004}}{2010-\frac{2010}{2001}-\frac{2010}{2002}-\frac{2010}{2003}-\frac{2010}{2004}}:\frac{2009-\frac{2009}{2005}-\frac{2009}{2006}-\frac{2009}{2007}-\frac{2009}{2008}}{2010-\frac{2010}{2005}-\frac{2010}{2006}-\frac{2010}{2007}-\frac{2010}{2008}}\)
Tính :
\(C=\frac{\frac{2010}{1}+\frac{2009}{2}+\frac{2008}{3}+....+\frac{1}{2010}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{2011}}\)
cho A=\(\frac{1}{2010}+\frac{2}{2009}+\frac{3}{2008}+...+\frac{2009}{2}+\frac{2010}{1}\)
B=\(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{2010}+\frac{1}{2011}\)
tính\(\frac{a}{b}\)
b.giả sử 2^2010 có m chữ số và 5^2010 có n chữ số.tính m+n