Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Dung Vu

Bài 1 : Rút gọn biểu thức                                                                                  

a. A = \(\left(a-2\right):\left\{\dfrac{a^2-b^2}{a^3+b^3}.\left[a-\dfrac{a^2+b^2}{b}:\left(\dfrac{1}{a}-\dfrac{1}{b}\right)\right]\right\}=\dfrac{a-2}{a}\)        

b. B = \(1:\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}-\dfrac{\sqrt{x}+1}{x-1}\right)\)     

2. Chứng minh đẳng thức :

a. \(\left(\dfrac{6a+1}{a^2-6a}+\dfrac{6a-1}{a^2+6a}\right).\dfrac{a^2-36}{a^2+1}=\dfrac{12}{a}\)

b.  \(\dfrac{\sqrt{x}-\sqrt{y}}{xy\sqrt{xy}}:\left[\left(\dfrac{1}{x}+\dfrac{1}{y}\right).\dfrac{1}{x+y+2\sqrt{xy}}+\dfrac{2}{\left(\sqrt{x}+\sqrt{y}\right)^3}.\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}\right)\right]=\dfrac{\sqrt{x}-\sqrt{y}}{\sqrt{xy}}\)

3. Chứng minh biểu thức không phụ thuộc vào biến :

a. A = \(\left(\dfrac{x}{x-y}-\dfrac{y}{x+y}\right):\left(\dfrac{x+y}{x-y}-\dfrac{2xy}{x^2-y^2}\right)\)

b. \(\left(\dfrac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\left(\dfrac{1-\sqrt{a}}{1-a}\right)^2\)

 

 

nthv_.
19 tháng 11 2021 lúc 11:54

Bài 3:

\(a,A=\dfrac{x^2+xy-xy+y^2}{\left(x-y\right)\left(x+y\right)}:\dfrac{x^2+2xy+y^2-2xy}{\left(x-y\right)\left(x+y\right)}\\ A=\dfrac{x^2+y^2}{\left(x-y\right)\left(x+y\right)}\cdot\dfrac{\left(x-y\right)\left(x+y\right)}{x^2+y^2}=1\\ b,=\left[\dfrac{\left(1-\sqrt{a}\right)\left(a+\sqrt{a}+1\right)}{1-\sqrt{a}}+\sqrt{a}\right]\left[\dfrac{1-\sqrt{a}}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}\right]^2\\ =\left(a+2\sqrt{a}+1\right)\left(\dfrac{1}{\sqrt{a}+1}\right)^2\\ =\left(\sqrt{a}+1\right)^2\cdot\dfrac{1}{\left(\sqrt{a}+1\right)^2}=1\)


Các câu hỏi tương tự
Ngô Thị Lan Anh
Xem chi tiết
Minh Anh Vũ
Xem chi tiết
Dung Vu
Xem chi tiết
Ling ling 2k7
Xem chi tiết
Khiêm Nguyễn Gia
Xem chi tiết
Minh Anh Vũ
Xem chi tiết
Beyond The Scence
Xem chi tiết
Dung Vu
Xem chi tiết
Ahihi
Xem chi tiết
Dung Vu
Xem chi tiết