Gọi v là vận tốc lúc đầu , t là thời gian chạy đoạn đường 30km.
ta có v.t=30(*)
Sẽ đến B chậm mất nữa giờ nếu giữ nguyên vận tốc đang đi,nhưng nếu tăng vận tốc thêm 5km/h thì tới B sớm hơn nửa giờ , tức là tăng v thêm 5 thí sẽ đi nhanh hơn 0.5+0.5=1h,
Vậy ta có : (v+5)(t-1)=30(**)
Cho (*)=(**) ta có : vt=vt+5t-v-5 <=> 5t-v-5=0
Thay \(t=\frac{30}{v}\) vào ta có : \(\frac{150}{v}-v-5=0\Leftrightarrow-v^2-5v+150=0\Leftrightarrow\hept{\begin{cases}v=10\\v=-15\left(loai\right)\end{cases}}\)
Gọi x là vận tốc xe đạp trên quãng đường đã đi lúc đầu (x>0) (km/h)
y là độ dài quãng đường AB (y>30) (km)
Theo đề bài : \(\hept{\begin{cases}\frac{30}{x}=\frac{y-30}{x}+\frac{1}{2}\left(1\right)\\\frac{30}{x+5}=\frac{y-30}{x}-\frac{1}{2}\left(2\right)\end{cases}}\)
Lấy (1) trừ (2) theo vế được : \(\frac{30}{x}-\frac{30}{x+5}=1\) Giải phương trình này được x = 10 (nhận ) và x = -15 (loại)
Vậy : Vận tốc xe đạp trên quãng đường đã đi lúc đầu là 10 km/h