8 + 9 + 10 + 11 + 12 + 13 + 14 + 15 + 16
Bài 1 :
Gỉa sử số 108 viết được dưới dạng tổng của k số tự nhiên liên tiếp là :
\(n+1,n+2,...n+\)\(k\)với \(k,n\in N,k\ge2,n+1\ge1\).Ta có :
\(\left(n+1\right)+\left(n+2\right)+...+\left(n+k\right)=108\)
\(\frac{\left(2n+k+1\right)}{2}=108\)
\(\left(2n+k+1\right)=216\)
Bài toán đưa đến việc tìm các ước của 216 .Ta đưa ra hai nhận xét sau để giảm bớt sô trường hợp phải xét :
1) \(2n+k+1>k\ge2\)
2) Hiệu \(\left(2n+1+k\right)-k=2n+1\), là số lẻ nên trong hai số \(2n+k+1\) và k có một số chẵn , một số lẻ
Do đó ta chỉ cần tìm ước lẻ của \(216\), đồng thời trong 2 số \(2n+k+1\) và k có tích bằng \(216\), chọn k là số nhỏ hơn
Phân tích ra thừa số nguyên tố : \(216=2^3.3^3\). ước lẻ của \(216\) lớn hơn 1
là \(3,9,27\)
Với \(k=3\) thì \(2n+k+1=72\), ta được \(n=34\), do đó :
\(108=35+36+37\)
Với \(k=9\) thì \(2n+k+1=24\),ta được \(n=7\), do đó :
\(108=8+9+...+16\)
Với \(2n+k+1=27\) thì \(k=8\),ta được \(n=9\), do đó :
\(108=10+11+...+17\)
Chúc bạn học tốt ( -_- )