cho tam giác ABC cân ở A, vẽ đường tròn tâm D đường kính BC cắt AB và AC lần lượt tại E và F. Các dây BF và CE cắt nhau ở H
a) AEHF thuộc 1 đường tròn, xác định tâm O
b) DE là tiếp tuyến của đường tròn tâm O
c) BC=10cm, AB=13cm. Tính bán kính đường tròn tâm O
cho tam giác ABC cân ở A, vẽ đường tròn tâm D đường kính BC cắt AB và AC lần lượt tại E và F. Các dây BF và CE cắt nhau ở H
a) AEHF thuộc 1 đường tròn, xác định tâm O
b) DE là tiếp tuyến của đường tròn tâm O
c) BC=10cm, AB=13cm. Tính bán kính đường tròn tâm O
Cho tam giác ABC nội tiếp trong đường tròn tâm O (AB>AC). Tia phân giác AD của góc A cắt đường tròn tâm O tại M, phân giasc ngoài của góc A cắt đường tròn tâm O tại N
a) MN vuông góc với BC
b) Vẽ đường tròn tâm O ngt tam giác ACD. Chứng minh C,I,N thẳng hàng
c) Chứng minh tâm giác ACI đồng dạng tam giác AMO
Cho tam giác ABC nội tiếp đường tròn tâm O, bán kính R, đường kính BC với AB < AC
a) tính góc BAC
b) Vẽ đường tròn tâm I, đường kính AO cắt AB, AC lần lượt tại H và K. Chứng minh H, I, K thẳng hàng
c) Tia OH, OK cắt tiếp tuyến tại A với đường tròn tâm O lần lượt tại D, E. Chứng minh BD + CE = DE
d) Chứng tỏ đường tròn đi qua 3 điểm D, O, E tiếp xúc với BC
BÀI 1 cho tam giác ABC vuông tại A .Nữa đường tròn đường kính AB cắt BC tại D.Trên cung AD lấy một điểm E .Nối BE và kéo dài AC tại F.Chứng minh tứ giác CDEF nội tiếp
BÀI 2: Cho đường tròn tâm O đường kính AB cố định ,CD là đường kính thay đổi của đường tròn (O) ( khác AB ) .Tiếp tuyến tại B của (O ) cắt AC và AD lần lượt tại N và M .Chứng minh tứ giác CDMN nội tiếp
BÀI 3 :Cho hai đoạn thẳng MN và PQ cắt nhau tại O .Biết OM.ON= PO.OQ.Chứng minh tứ giác MNPQ nội tiếp
BÀI 4: Cho tam giác ABC có đường cao AH . Gọi M, N lần lượt là hình chiếu vuông góc của H lên các cạnh AB, AC
a) c/m AMHN nội tiếp
b) BMNC nội tiếp
BÀI 5: Cho tam giác ABC các đường phân giác trong là BE và CF cắt nhau tại M và các đường phân giác ngoài của các góc B và góc C cắt nhau tại N .chứng minh BMCN nội tiếp
BÀI 6: Cho đường tròn (O) đường kính AB .Gọi M là một điểm trên tiếp tuyến xBy , đường thẳng AM cắt đường tròn (O) tại C , lấy D thuộc BM, nối AD cắt (O) tại I. c/m CIDM nội tiếp
BÀI 7: Cho đường tròn tâm (O) có cung EH và S là điểm chính giữa cung đó .Trên dây EH lấy hai điểm A và B .Các đường thẳng SA và SB cắt đường tròn lần lượt tại D và C .c/m ABCD là tứ giác nội tiếp
BÀI 8: Cho đường tròn (O) đường kính AB , từ A và B vẽ Ax vuông góc AB và By vuông góc BA (Ax và By cùng phía so với bờ AB ) .Vẽ tiếp tuyến x'My' (tiếp điểm M) cắt Ax tại C và By tại D ; OC cắt AM tại I và OD cắt BM tại K .Chứng minh CIKD nội tiếp
Cho tam giác ABC cân tại A,
AB =AC =10cm;BC=12cm
. Gọi O là trung điểm của BC. Vẽ
đường tròn tâm (O) tiếp xúc với AB; AC theo thứ tự tại D và E. Điểm M thuộc cung nhỏ DE.
Tiếp tuyến với đường tròn (O) tại M cắt các cạnh AB, AC lần lượt tại P và Q.
a) Tính bán kính của (O).
Cho tam giác ABC vuông tại A (AB<AC).Vẽ đường tròn tâm O đường kính BC.
a)CM: A nằm trên đường tròn tâm O.
b) Từ A hạ đường thẳng với BC cắt đường tròn tâm O tại N.CM: Tam giác ACN cân.
c) Từ A kẻ tiếp tuyến với đường tròn tâm O cắt CB kéo dài tại M.CM: MN là tiếp tuyến của đường tròn tâm O .
GIÚP EM BÀI1,BÀI 2 VỚI Ạ,EM CẦN GẤP LẮM RỒII
1)Cho tam giác ABC cân tại A,AB=10cm,BC=16cm.Tính bán kính của đường tròn nội tiếp tam giác đó
2)Cho nửa đường tròn tâm O đường kính ,tiếp tuyến Ax và By.Tiếp tuyến của nửa đường tròn tại M cắt Ax ở C,cắt By ở D.Gọi giao điểm của AD,BC là N.MN cắt AB ở I.Chứng minh:
a)MN//AC
b)N là trung điểm MI
cho tam giác ABC vuông tại A, đường cao AH biết BC=10cm, góc C=30 độ
a) Tính AB,AC và AH
b) Vẽ đường tròn tâm O đường kính AB. Chứng minh H thuộc đường tròn O
c) Vẽ AI vuông góc với OC tại I và cắt đường tròn tại D. Chứng minh CD là tiếp tuyến của đừng tròn O