Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
phuongtran

Bài 1. Cho tam giác ABC. Gọi M và N lần lượt là trung điểm của AC và AB. Trên tia đối của các tia MB và NC lần lượt lấy các điểm D và E sao cho MD = MB và NE = NC. Chứng minh rằng:

a) AD = AE.

b) Ba điểm A; E; D thẳng hàng.

Thư Phan
2 tháng 12 2021 lúc 9:01

Tham khảo

 

a) Xét △ADM△ADM và △CBM△CBM ta có :

MD = MB (gt)

ˆM1=ˆM2M1^=M2^ (2 góc đối đỉnh)

AM = CM (gt)

=> △ADM=△CBM△ADM=△CBM (c.g.c)

=> AD = BC (2 cạnh tương ứng) (1)

Xét △AEN△AEN và △BCN△BCN ta có :

AN = BN (gt)

ˆN1=ˆN2N1^=N2^ (2 góc đối đỉnh)

EN = CN (gt)

=> △AEN=△BCN△AEN=△BCN (c.g.c)

=> AE = BC (2 cạnh tương ứng) (2)

Từ (1) và (2) => AD = AE

b) Ta có : △ADM=△BCM△ADM=△BCM (CMT)

=> ˆADM=ˆBCMADM^=BCM^ (2 góc tương ứng)

Mà ˆADMADM^ và ˆBCMBCM^ là 2 góc so le trong

=>AD // BC (dấu hiệu nhận biết 2 đường thẳng song song) (3)

Ta có : △AEN=△BCN△AEN=△BCN (CMT)

=> ˆAEN=ˆBCNAEN^=BCN^ (2 góc tương ứng)

=> Mà ˆAENAEN^ và ˆBCNBCN^ là 2 góc so le trong

=> AE // BC (dấu hiệu nhận biết 2 đường thẳng song song) (4)

Từ (3) và (4) => A,D,EA,D,E thẳng hàng (theo tiên đề Ơ-clit)


Các câu hỏi tương tự
phuongtran
Xem chi tiết
Lê minh phương
Xem chi tiết
Võ Thành Nam
Xem chi tiết
nguyễn quang khải
Xem chi tiết
Hirasagi Toriki
Xem chi tiết
Đặng vân anh
Xem chi tiết
Đặng vân anh
Xem chi tiết
Đặng vân anh
Xem chi tiết
Trần Quang Huy
Xem chi tiết