Bài 1 : cho tam giác ABC có góc B = góc C. Tia phân giác của góc A cắt BC tại D
Chứng minh rằng: a) tam giác ADB = tam giác ADC b) AB=AC c) AD là trung trực của BC
Bài 2: cho tam giác ABC có góc B = 70o ; góc C = 30o. Tia phân giác của góc A cắt BC tại D. Kẻ AH vuông góc với BC (H thuộc BC)
a) tính số đo các góc BAC ; HAD ; ADH
b) Từ D kẻ DM vuông góc với AB, DN vuông góc với AC ( M thuộc AB ; N thuộc AC ). Chứng minh AM =AN
c) chứng minh AD là đường trung trực của MN
Bài 1:
a, Xét tam giác ADB và tam giác ADC
Ta có: góc BAD = góc CAD
AD cạnh chung
góc ADB = góc ADC ( = 180' - góc BAD - góc ABD = 180' - góc CAD - góc ACD)
Do đó: tam giác ADB = tam giác ADC ( g - c - g)
b, Ta có: tam giác ADB = tam giác ADC ( chứng minh trên)
Suy ra: AB = AC ( hai cạnh tương ứng)
c, Ta có: tam giác ADB = tam giác ADC ( chứng minh trên)
Suy ra: BD = CD( hai cạnh tương ứng) (1)
và góc ADB = góc ADC ( hai góc tương ứng)
mà góc ADB + góc ADC = 180' ( kề bù)
Suy ra: góc ADB = 90' hay AD vuông góc với BC (2)
Từ (1) và (2), suy ra: AD là đường trung trực của BD
Nếu bạn đã học tam giác cân rồi thì cách giải sau đây phù hợp hơn, nếu chưa học thì bạn nên giải cách trên.
a,Xét tam giác ADB và tam giác ADC
Ta có: góc BAD = góc CAD
AB = AC ( góc ABD = góc ACD, tam giác ABC cân tại A)
góc ABD = góc ACD ( giả thiết)
Do đó: tam giác ADB = tam giác ADC ( g - c - g)
b, Ta có: góc ABD = góc ACD ( gt)
Suy ra: tam giác ABC cân tại A.
Suy ra: AB = AC
c, Tam giác ABC cân tại A nên AD vừa là đường phân giác cũng vừa là đường trung tuyến.
Diễn giải:
- Khi cộng, trừ số thập phân ta tiến hành cộng hoặc trừ các phần tương ứng của các số đó.
Ví dụ 1:
Tính 0,25 + 2,5 ta làm như sau: 5 + 0 = 5 , 2 + 5 =7, 0 + 2 = 2. Vậy 0,25 + 2,5 = 2.75
Tính 8,6 - 2,7 ta làm như sau: 6 - 7 không trừ được ta lấy 16 - 7 = 9, tiếp tục 8 - 2 trừ thêm 1 nữa tức là 8 -3 = 5. Vậy 8,6 - 2,7 = 5,9
- Với phép nhân, chia các số thập phân ta cần viết chúng dưới dạng phân số.
Bài 1:
(Tự vẽ hình nhoa)
a) Chứng minh:
Xét 2 tam giác ADB và tam giác ADC (có thể dùng kí hiệu tam giác):
Góc B = Góc C (gt) ((có thể dùng kí hiệu góc))
BD = CD (gt)
AD là cạnh chung
Do đó: Tam giác ADB = tam giác ADC (c.g.c)
b) Chứng minh:
Vì tam giác ADB = tam giác ADC (câu a)
=> AB = AC (2 cạnh tương ứng)
c) Vì AB = AC và ^B = ^C nên Tam giác ABC là tam giác cân
AD là tia phân giác của tam giác cân nên đồng thời là đường trung trực của BC
(câu c nầy mình tl đại đấy ^^, thông cảm mình hông chắc...><)
Bài 2:
Bài 2 nầy mình biết làm đấy...nhưng....mình...l.à.m..b.i.ế.n.g....thoy hà. Xl nhoa nhoa...Mình biết làm đấy (mình nói thật đấy)..Okkkkk!
#ngườiviết:
Shin
Trương Phạm Quỳnh Shyn-Sin