Bài 1 : cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE. Kẻ BH vuông góc với AD, kẻ CK vuông góc với AE. Chứng minh rằng:
A) BH=CK b) tam giác ABH= tam giác ACK
Bài 2: tam giác ABC có M là trung điểm của BC, AM là tia phân giác của góc A. Kẻ MH vuông góc với AB, MK vuông góc với AC. Chứng minh rằng:
a) MH=MK b) góc B = góc C
Bài 3: cho tam giác ABC cân tại A. Các đường trung trực của AB, AC cắt nhau ở I. Chứng minh rằng: AI là tia phân giác của góc A.
GIÚP MK VS. Mình cần bài này trước 13h chiều mai nhé. Mong m.n giúp đỡ. THANKS Ạ❤
Bài 3 :
Gọi gia điểm của các đường trung trực với AB,Ac lần lượt là H ,K
Ta có :AH + HB = AB
AK + KC = AC
mà AB = AC ( tam giác ABC cân tại A)
=> AH + HB = AK + KC
mà CH và Bk lần lượt là trung trực của AB ,AC
=> AH = HB = AK = KC
Xét tam giác AHI và tam giác AKI có
AHI = AKI = 90
AH = AK ( cmt )
AI : cạnh chung
=> tam giác AHI = tam giác AKI ( canh huyền - cạnh gosc vuông )
=> ^HAI = ^KAI ( 2 góc tương ứng )
=> AI là tia phân giác của ^A
Vậy AI là tia phân giác của ^A
Bài 1
a, Vì tam giác ABC cân tại A => AB = AC và ^ABC = ^ACB
Ta có : ^ABC + ^ABD = 180 (kề bù )
^ACB + ^ ACE = 180 ( kề bù )
mà ^ABC = ^ACB
=> ^ABD = ^ ACE
Xét tam giác ABD và tam giác ACE có :
AB =AC ( tam giác ABc cân tại a )
^ABD = ^ACE ( cmt )
BD = CE ( gt)
=> tm giác ABD = tam giác ACE ( c.g.c)
=> ^ADB = ^AEC ( 2 góc tương ứng )
hay ^HDB = ^KEC
Xét tam giác HBD và tam gisc KEC có :
^DHB = ^EKC = 90
BD = CE (gt)
HDB = KEc ( cmt )
=> tam giác HBD = tam giác KCE ( cạnh huyền - góc nhọn )
=> HB = Ck ( 2 canh tương ứng )
Vậy HB = Ck
b,Xét tam giác ABH và tam giác ACk có
AHB = AKC = 90
HB = CK ( cmt )
AB = AC
=> tam giác ABH = tam giác ACK ( anh huyền - canh góc vuồng )
Vậy tam giác ABH =tam giác ACK
Bài 2 :
a, Xét tam giác AHM và tam giác AKM có
AHM= AKM= 90
^HAM = ^KAM
AM: canh chung
=> tam giác AHM và tam giác AKM ( canh huyền - góc nhọn)
=> MH = MK ( 2 cạnh tương ứng )
Vậy MK = MK
b,Xét tam giác HBM và tam giác KCM có
BHM = CKM = 90
MH = MK ( cmt)
BM= MC ( M là trung điểm của BC)
=> tam giác HBM = tam giác KCM ( cạnh huyền - cạnh góc vuông )
=> ^ B = ^C ( 2 góc tương ứng)
Vậy ^ B = ^C