Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Hữu Quang

Bài 1: Cho hình thang cân ABCD có AB//CD, đường chéo DB vuông góc với cạnh bên BC, DB là tia phân giác góc D. Tính chu vi của hình thang, biết BC=3cm.

Bài 2: Cho tam giác ABC cân tại A, các đường phân giác BD,CE (D thuộc AC, E thuộc AB)

                  a) Chứng minh BEDC là hình thang cân

                  b) Tính các góc của hình thang cân BEDC, biết góc C=50 độ

Bài 3: Cho hình thang cân ABCD có AB//CD, O là giao điểm của hai đường chéo, E là giao điểm của hai đường thẳng chứa cạnh bên AD và BC. Chứng minh:

                a) OA=OB , OC=OD

                b) EO là đường trung trực của hai đáy hình thang ABCD. 

            Các bạn giải giúp mình bài này nhé. Cảm ơn các bạn.

Bài 2:

loading...

Ta có: ∆ABC là ∆ cân tại A(gt)

=>∠ABC=∠ACB

+Ta có BD là tia pgiac của ∠ABC

=>∠B1=∠B2=1/2∠ABC

+Ta có CE là tia pgiac ∠ACB

=>C1=C2=1/2∠ACB

Xét 

AEC và ΔADB có:

+∠A chung

+AB=AC

+C1=B1

=> ΔAEC = ΔADB

=> AE = AD

=>BCDE là hình thang cân

b) Ta có ∠ACB=∠ABC=50o(do BCDE là hình thang cân)

Ta có: ED//BC

\(\Rightarrow\left\{{}\begin{matrix}\widehat{ABC}=\widehat{AED}\\\widehat{ACB}=\widehat{ADE}\end{matrix}\right.=50^o}\) (SLT)

Mà ∠DEB=∠EDC

Ta có:

+∠DEB+∠AED=180o (kề bù)

=>50o+∠AED=180o

=>∠AED=180o-50o=130o

=>∠AED=∠ADE=130o

Bài 1:

 

loading...

Ta có: AD=BC=3cm (t/c hthang)

Vì AB//CD(gt) nên \(\widehat{ABD}=\widehat{BDC}\left(SLT\right)\)

Mà \(\widehat{ADC}=\widehat{BDC}\) (do BD là tia pgiac góc D)

=>∠ABD=∠BDC 

=>∆ABD cân tại A

=>AD=BC=3cm

Vì ∆DBC vuông tại B

nên ∠BDC+∠C=90o

Mà ∠ADC=∠C (do ABCD là hình thang cân)

và ∠BDC=1/2 ∠ADC

=> ∠BCD=1/2∠C

Khi đó: ∠C+1/2∠C=90o=>∠C=60o

- Kẻ từ B 1 đường thẳng // AD cắt CD tại E

Hình thang ABED có hai cạnh bên song song nên AB = DE và AD = BE

⇒ DE = 3 (cm), BE = 3 (cm)

Mà ∠BEC=∠ADC(đồng vị)

=>∠BEC=∠C

=>∆BEC cân tại B có ∠C=60o

=>∆BEC là ∆ cả cân cả đều

=> EC=BC=3cm

Ta có: CD = CE + ED = 3 + 3 = 6(cm)

Chu vi hình thang ABCD bằng:

AB + BC + CD + DA = 3 + 3 + 6 + 3 = 15 (cm)

loading...

Xét \(\Delta\)ABD có: \(\widehat{ABD}\) = \(\widehat{BDC}\) ( hai góc so le trong)

                         \(\widehat{ADB}\) = \(\widehat{BDC}\) (BD là phân giác của góc \(\widehat{ABD}\))

            ⇒          \(\widehat{ABD}\) =  \(\widehat{ADB}\) (vì cùng bằng góc BDC)

             ⇒          \(\Delta\) ABD cân tại A ⇒ AB = AD = 3 cm

Gọi E là trung điểm của DC ta có:\(\Delta\)BCD vuông tại B nên

BE = DE = EC (trong tam giác vuông trung tuyến ứng với cạnh huyền bằng \(\dfrac{1}{2}\) cạnh huyền)

Mặt khác ta có: \(\widehat{ADC}\) = \(\widehat{DCB}\) ( vì ABCD là hình thang cân)

\(\widehat{BDC}\) = \(\dfrac{1}{2}\) \(\widehat{DCB}\) ⇒ \(\widehat{DCB}\) + \(\dfrac{1}{2}\)\(\widehat{DCB}\) = 900 

⇒ \(\widehat{DCB}\) \(\times\) ( 1 + \(\dfrac{1}{2}\)) = 900

⇒ \(\widehat{DCB}\) = 900 : \(\dfrac{3}{2}\) = 600 

Xét \(\Delta\)BCE có BE = EC và  \(\widehat{BCE}\) = 600 nên \(\Delta\)BCE là tam giác đều

⇒ BE = EC = BC = 3 cm 

⇒ DC = BE \(\times\) 2 = 3 \(\times\) 2 = 6 cm

Chu vi của hình thang ABCD là:

3 + 3 + 6 + 3 = 15 (cm)

Kết luận chu vi hình thang là: 15 cm

 

 

 


Các câu hỏi tương tự
Nguyễn Hữu Quang
Xem chi tiết
Loan Nguyễn
Xem chi tiết
Lương Châu Anh
Xem chi tiết
Nguyễn Hữu Quang
Xem chi tiết
Nguyễn Hữu Quang
Xem chi tiết
Như Nguyễn
Xem chi tiết
yunn min
Xem chi tiết
Nguyễn Hồng Thanh
Xem chi tiết
Lê Ngọc lâm
Xem chi tiết