Bài 1 : Cho các đa thức f(x) = 4x2 + 3x – 2; g(x) = 2x2 + 1; h(x) = 5x2 – 3x – 1
a) Tính F(-1/2)
b) Tìm x để f(x) + g(x) – h(x) = 0
c) Chứng tỏ đa thức g(x) không có nghiệm
Bài 2 :
Cho tam giác ABC vuông tại A, phân giác của góc B cắt AC tại M . Kẻ MD vuông góc với BC (D thuộc BC).
a. Chứng minh BA=BD.
b. Gọi điểm E là giao của hai đường thẳng DM và BA. Chứng minh : tam giác ABC = tam giác DBE.
c. Kẻ DH vuông góc với MC tại H và AK vuông góc với ME tại K . Gọi N là giao của hai tia DH và AK . Chứng minh : MN là tia phân giác của góc HMK.
d.Chứng minh: Ba điểm B,M,N thẳng hàng
1a) f(-1/2) = 4.(-1/2)2 + 3.(-1/2) - 2 = 4.1/4 - 3/2 - 2 = 1 - 3/2 - 2 = -5/2
b) Ta có: f(x)+ g(x) - h(x) = 0
=> (4x2 + 3x - 2) + (2x2 + 1) - (5x2 - 3x - 1) = 0
=> 4x2 + 3x - 2 + 2x2 + 1 - 5x2 + 3x + 1 = 0
=> (4x2 + 2x2 - 5x2) + (3x + 3x) - (2 - 1 - 1) = 0
=> x2 + 6x = 0
=> x(x + 6) = 0
=> \(\orbr{\begin{cases}x=0\\x+6=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=0\\x=-6\end{cases}}\)
Vậy ...
c) Ta có: 2x2 \(\ge\)0 \(\forall\)x => 2x2 + 1 \(\ge\)1 \(\forall\)x
=> 2x2 + 1 \(\ne\)0
=> đa thức g(x) = 2x2 + 1 vô nghiệm