1,CMR nếu a,b,c x,y,z thỏa mãn điều kiện :
\(\frac{bz+cy}{x\left(-ax+by+cz\right)}=\frac{cx+az}{y\left(ax-by+cz\right)}=\frac{ay+bx}{z\left(ax+by-cz\right)}\)
thì \(\frac{x}{a\left(b^2+c^2-a^2\right)}=\frac{y}{b\left(a^2+c^2-b^2\right)}=\frac{z}{c\left(a^2+b^2-c^2\right)}\)
( giả thiết các tỉ số đều có nghĩa )
2,CMR nếu \(\frac{a+bx}{b+cy}=\frac{b+cx}{c+ay}=\frac{c+ax}{a+by}\)
thì \(a^3+b^3+c^3-3abc=0\)
3,CMR nếu \(x+\frac{1}{y}=y+\frac{1}{z}=z+\frac{1}{x}\)
thì x=y=z hoặc x2y2z2=1
Cho các số dương a,b,c,x,y,z thỏa mãn x=by+cz;y=ax+cz;z=ax+by
Chứng minh rằng: \(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}=2\)
cho a,b,c,x,y,z thỏa mãn: ax+by=c, by+cz=a, cz+ax=b, x,y,z khác -1, (a+b+c) khác 0. Tính P=1/(x+1)+1/(y+1)+1/(z+1)
Bài 1 : Cho các số a;b;c;x;z khác 0 thỏa mãn : ax=by=cz ; \(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=1\)
Chứng minh : \(\left(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}\right)^2=\frac{abxy+bcyz+acxz}{3}\)
Rất Gấp!
Cho a,b,y,x,y,z thỏa mãn \(\hept{\begin{cases}x=by+cz\\y=cz+ax\\z=ax+by\end{cases}}\)
Biết \(a,b,c\ne-1\).Tính giá trị của \(M=\frac{a}{1+a}+\frac{b}{1+b}+\frac{c}{1+c}\)
cho các số thức a,b,c,x,y,z khác 0 thỏa mãn \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\) CMR \(\frac{x^2+y^2+c^2}{\left(ax+by+cz\right)^2}=\frac{1}{a^2+b^2+c^2}\)
các bạn giúp mình nha mình cần để nộp gấp ạ
Cho a,b,c,x,y,z E Z+ sao cho:
x=by+cz(1)
y=ax+cz(2)
z=ax+by(3)
Chứng minh rằng: \(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}=2\)
P/s:không làm theo cách của Trần Đức Thắng
1. Cho a,b,c,x,y,z khác 0 thỏa mãn:
\(\frac{7cy-5bz}{x}=\frac{2az-7cx}{y}=\frac{5bx-2ay}{z}\)
CMR: \(\frac{2a}{x}=\frac{5b}{y}=\frac{7c}{z}\)
2.Cho a,b,c,x,y,z khác 0 thỏa mãn: \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)
CMR: \(\frac{x^2+y^2+z^2}{\left(ax+by+cz\right)^2}=\frac{1}{a^2+b^2+c^2}\)
3.Cho a,b,c thỏa mãn \(\frac{a}{2016}=\frac{b}{2017}=\frac{c}{2018}\)
CMR: 4(a-b)(b-c)=(a-c)2
4. Cho a,b,c thỏa mãn:\(\frac{a}{x}=\frac{b}{x+1}=\frac{c}{x+2}\)
CMR: 4(a-b)(b-c)=(a-c)2
5. Cho a,b,c thỏa mãn:
\(\frac{a}{-2017}=\frac{b}{-2016}=\frac{c}{-2015}\)
CMR: 4(a-b)(b-c)=(a-c)2
6. Cho a,b,c khác 0 và \(\frac{b+c+a}{a}=\frac{a+b-c}{b}=\frac{c+a-b}{c}\)
Tính giá trị biểu thức A=\(\frac{\left(a-b\right)\left(c+b\right)\left(c-a\right)}{abc}\)
tìm giá trị M=\(\frac{1}{x+2}+\frac{1}{y+2}+\frac{1}{z+2}\)
biết 2a=by+cz ; 2b=ax+cz ; 2c= ax+by và a,b,c khác 0