Bài 1:Với a,b,c,d dương
Ta có: \(\frac{a}{a+b+c+d}
Bài 1:Với a,b,c,d dương
Ta có: \(\frac{a}{a+b+c+d}
Cho a,b,c,d là 4 số thực dương thỏa mãn a+b+c+d=1.CMR:
\(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+d}+\frac{d^2}{d+a}\ge\frac{1}{2}\)
Bài 1:Cho a,b,c,d là các số dương. Chứng minh rằng :
\(\frac{a^4}{\left(a+b\right)\left(a^2+b^2\right)}+\frac{b^4}{\left(b+c\right)\left(b^2+c^2\right)}+\frac{c^4}{\left(c+d\right)\left(c^2+d^2\right)}+\frac{d^4}{\left(d+a\right)\left(d^2+a^2\right)}\ge\frac{a+b+c+d}{4}\)
Bài 2:Cho \(a>0,b>0,c>0\).\(CM:\frac{a}{bc}+\frac{b}{ca}+\frac{c}{ab}\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Bài 3: a) Cho x,y,>0. CMR:\(\frac{x^3}{x^2+xy+y^2}\ge\frac{2x-y}{3}\)
b) Chứng minh rằng\(\Sigma\frac{a^3}{a^2+ab+b^2}\ge\frac{a+b+c}{3}\)
1.cho tam giác ABC vuong tại A có AD là duong phan giác góc A( D thuoc BC) biết AB= c,AC=b và AD=d
cm\(\frac{\sqrt{2}}{d}=\frac{1}{b}+\frac{1}{c}\)
2.Cho a,b,c là 3 số nguyên dương thỏa mãn a+b+c+ab+bc+ca=6abc
cmr:\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\)>=3
Cho a,b,c là độ dài 3 cạnh của tam giác và a+b+c=3.CMR:
\(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
Câu 1: Có thể có hay không một tam giác có thể chia thành 5 tam giác bằng nhau?
Câu 2: Cho a,b,c,d>0. Tìm giá trị nhỏ nhất của biểu thức:
\(\)\(S=\frac{a}{b+c+d}+\frac{b}{c+d+a}+\frac{c}{a+b+d}+\frac{d}{a+b+c}+\frac{b+c+d}{a}+\frac{c+d+a}{b}+\frac{a+b+d}{c}+\frac{d}{a+b+c}\)
cho a,b,c,d la các số thực dương co tong bang 1. Cmr
\(\frac{\text{a}^2}{\text{a}+b}+\frac{b^2}{b+c}+\frac{c^2}{c+d}+\frac{d^2}{d+\text{a}}\ge\frac{1}{2}\)
1) Cho a,b,c,d>0. cmr:
a)\(\frac{a}{b}+\frac{b}{c}+\frac{c}{d}>=\frac{a+b+c}{\sqrt[3]{abc}}\)
b)\(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{d^2}+\frac{d^2}{e^2}>=\frac{a+b+c+d}{\sqrt[4]{abcd}}\)
cho a,b,c,b \(\ge0.CMR\)
\(\frac{a^2}{b^5}+\frac{b^2}{c^5}+\frac{c^2}{d^5}+\frac{d^2}{a^5}\ge\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}+\frac{1}{d^3}\)
Với a,b,c,d dương, CMR:
\(\frac{a}{b+c}+\frac{b}{c+d}+\frac{c}{d+a}+\frac{d}{a+b}>=2\)