1.
a + b + c = 0 \(\Rightarrow\)a = - ( b + c ) \(\Rightarrow\)a2 = [ -( b + c ) ]2 \(\Rightarrow\)a2 = b2 + c2 + 2bc
Tương tự : b2 = a2 + c2 + 2ac ; c2 = a2 + b2 + 2ab
a + b + c = 0 \(\Rightarrow\)a3 + b3 + c3 = 3abc ( chứng minh )
Ta có : \(A=\frac{a^2}{b^2+c^2+2bc-b^2-c^2}+\frac{b^2}{a^2+c^2+2ac-a^2-c^2}+\frac{c^2}{a^2+b^2+2ab-a^2-b^2}\)
\(A=\frac{a^2}{2bc}+\frac{b^2}{2ac}+\frac{c^2}{2ab}\)
\(A=\frac{a^3+b^3+c^3}{2abc}=\frac{3abc}{2abc}=\frac{3}{2}\)
2. quy đồng mà giải
tại sao a+b+c=0 lại suy ra đc \(a^3+b^3+c^3=3abc\)