bài 1: A=1+2+22+23+...+2100
=(1+2+22+23+24)+(25+26+27+28+29)+...+(296+297+298+299+2100)
=31+25.(1+2+22+23+24)+....+296.(1+2+22+23+24)
=31+25.31+....+296.31
=31.(1+25+...+296) chia hết cho 31
Vậy số dư khi chia A cho 31 là 0
bài 2:
S=22+42+62+...+202
=12.22+22.22+22.32+...+22.102
=22.(12+22+32+....+102)
=4.385=1540
1)dư 1
2) S=2^2+4^2+6^2+..+20^2
=(1.2)^2+(2.2)^2+(2.3)^2+...+(2.10)^2
=1^2.2^2+2^2.2^2+2^2.3^2+..+2^2.10^2
=2^2.(1^2+2^2+3^2+...+10^2)=4.385=1540
tick nhé
S=2^2+4^2+6^2+...+20^2
=(1.2)^2+(2.2)^2+(3.2)^2+...+(10.2)^2
=1.2^2+2^2.2^2+3^2.2^2+...+10^2.2^2
=2^2(1+2^2+3^2+...+10^2)
=2^2.385=1540
A=1+2+2^2+2^3+..+2^100
=(1+2+2^2+2^3+2^4)+...+(2^96+2^97+2^98+2^99+2^100)
=31+...+2^96(1+2+2^2+2^3+2^4)
=31+...+2^96.31
=31(1+...+2^96) chia hết cho 31
=> số dư chia cho A=0