Chứng minh rằng :
\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{19}-\frac{1}{20}=\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{20}\)
bài 1:
tìm n biết: 5n+7 chia hết 3n+2
bài 2:
1, tìm chữ số tận cùng của:
a,57^1999
b,93^1999
2, Cho A= 999993^1999 - 555557^1997
chứng minh rằng: A chia hết cho 5
bài 3:chứng minh rằng:
a) \(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}< \frac{1}{3}\)
b)\(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}< \frac{3}{16}\)
Bài 5:Tìm x biết:
a)11.(x-6)=4.x+11
b)\(4\frac{1}{3}.\left(\frac{1}{6}-\frac{1}{2}\right)\le x\le\frac{2}{3}.\left(\frac{1}{2}-\frac{1}{3}-\frac{1}{4}\right)\)với x\(\in\)Z
c)|x-3|+1=x
Bài 1:
Chứng minh rằng:
\(\frac{1}{6}< \frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{100^2}< \frac{1}{4}\)
Bài 2:
Cho \(A=\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{70}\)
CMR: \(a)A>\frac{4}{3}\); \(b)A< 2,5\)
Bài 1:
a, Cho S=\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{9^2}\) .Chứng minh rằng \(\frac{2}{5}< S< \frac{8}{9}\)
b, Tìm x thuộc z để phân số \(\frac{x^2-5x-1}{x+2}\)có giá trị là số nguyên
c, Chứng minh rằng \(\left(\frac{7}{65}+1\right)\left(\frac{7}{84}+1\right)\left(\frac{7}{105}+1\right)\left(\frac{7}{124}+1\right)...\left(\frac{7}{153+1}\right)\left(\frac{7}{560}+1\right)< 2\)
d, Chứng minh rằng \(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+\frac{5}{3^5}-...+\frac{99}{3^{99}}-\frac{100}{3^{100}}< \frac{3}{16}\)
Bài 4 :
a) Tính giá trị của biểu thức :
\(A=\left(\frac{1\frac{11}{31}\cdot4\frac{3}{7}-\left(15-6\frac{1}{3}\cdot\frac{2}{19}\right)}{4\frac{5}{6}+\frac{1}{6}\left(12-5\frac{1}{3}\right)}\cdot\left(-1\frac{14}{93}\right)\right)\cdot\frac{31}{50}\)
b) Chứng tỏ rằng : \(B=1-\frac{1}{2^2}-\frac{1}{3^2}-\frac{1}{3^2}-...-\frac{1}{2004^2}>\frac{1}{2004}\)
Bài 1: tính nhanh
a)\(6\frac{4}{5}-\left(1\frac{2}{3}+3\frac{4}{5}\right)\)
b)\(\left(\frac{-4}{5}+\frac{4}{3}\right)+\left(\frac{-5}{4}+\frac{14}{5}\right)-\frac{7}{3}\)
c)\(\frac{8}{3}.\frac{2}{5}.\frac{3}{8}.10\frac{19}{92}\)
d)\(\frac{-5}{7}.\frac{2}{11}+\frac{-5}{7}.\frac{9}{14}+1\frac{5}{7}\)
e)\(\frac{12}{19}.\frac{7}{15}.\frac{-13}{17}.\frac{19}{12}.\frac{17}{13}\)
Chứng minh rằng:
a)\(\frac{1}{41}+\frac{1}{42}+\frac{1}{43}+...+\frac{1}{79}+\frac{1}{80}>\frac{7}{12}\)
b)\(\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^n}<1\)
Bài 1:
a) A = 1 +\(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}\) . Chứng minh rằng A \(⋮\) 100.
b) A = \(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{70}\). Chứng minh rằng A > \(\frac{4}{3}\)
Mk cần giải bài này:
Bài 1: Chứng minh rằng
a) B= 3/10 + 3/11 + 3/12 + 3/13 + 3/14 ko phải là số tự nhiên.
b) C=\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{9^2}.\) Chứng tỏ \(\frac{2}{5}< C< \frac{8}{9}\)