Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
♛☣ Peaceful Life ☣♛

Bài 1: Cho a, b, c\(\inℕ^∗\)và S =\(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\)

Tìm giá trị nhỏ nhất của S

Bài 2: Chứng minh rằng : A =\(\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{49^2}+\frac{1}{50^2}>\frac{1}{4}\)

Trí Tiên亗
4 tháng 2 2020 lúc 21:19

Bài 1 :

Ta có : \(S=\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\)

\(=\frac{a}{c}+\frac{b}{c}+\frac{b}{a}+\frac{c}{a}+\frac{c}{b}+\frac{a}{b}\)

\(=\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\)

Ta chứng minh BĐT \(\frac{x}{y}+\frac{y}{x}\ge2,\forall x,y>0\)

Thật vậy : BĐT \(\Leftrightarrow\frac{x}{y}+\frac{y}{x}-2=\frac{\left(x-y\right)^2}{xy}\ge0\) ( đúng )

Vậy \(\frac{x}{y}+\frac{y}{x}\ge2,\forall x,y>0\)

Áp dụng vào bài toán ta có : \(S\ge2+2+2=6\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)

Vậy min \(S=6\) tại \(a=b=c\)

Khách vãng lai đã xóa

Các câu hỏi tương tự
Phạm Thị Bích Ngọc
Xem chi tiết
Nguyễn Thị Thùy Linh
Xem chi tiết
Ms. Yugi
Xem chi tiết
Kudo Shinichi
Xem chi tiết
Lê Vương Đạt
Xem chi tiết
lyli
Xem chi tiết
lyli
Xem chi tiết
Aikatsu mizuki
Xem chi tiết
Phan Tiến Dũng
Xem chi tiết