Ta đặt biểu thức trên là S
Ta có S = 3 x (1 + 3^2 + 3^4 + 3^6 + ... + 3^1990) = 3 x P
Chứng mình S chia hết cho 13 và 41 tương đưong với chứng mình P chia hết cho 13 và 41
P có 996 số hạng
Nhóm P thành từng bộ 3 số hạng
P = 1 + 3^2 + 3^4 + 3^6 + ... + 3^1990
= (1 + 3^2 + 3^4) + 3^6 x (1 + 3^2 + 3^4) + ... + 3^1986 x (1 + 3^2 + 3^4)
= (1 + 3^2 + 3^4) x (1 + 3^6 + 3^12 + ... + 3^1986)
= 91 x (1 + 3^6 + .... + 3^1986)
Do 91 chia hết cho 13 nên P cũng chia hết cho 13
Nhóm P thành từng bộ 4 số hạng và làm tương tự ta cũng có:
P = (1 + 3^2 + 3^4 + 3^6) x (1 + 3^8 + 3^16 + ... + 3^1984)
= 820 x (1 + 3^8 + 3^16 + ... + 3^1984)
Do 820 chia hết cho 41 nên P cũng chia hết cho 41
Ta có:
B= 3 + 33 + 35 + … + 31991= (3 + 33 + 35) + (37+ 39 + 311 ) + … + (31987 + 31989 + 31991).
= 3 x (1 + 32 + 34) + 37 x (1 + 32 + 34) + … + 31987 x (1 + 32 + 34).
= 3 x 91 + 37 x 91 + … + 31987 x 91= 3 x 7 x 13 + 37 x 7 x 13 + … + 31987 x 7 x 13.
= 13 x ( 3 x 7 + 37 x 7 + … + 31987 x 7).
Vì B = 13 x ( 3 x 7 + 37 x 7 + … + 31987 x 7) nên B chia hết cho 13.
B= (3 + 33 + 35 + 37) + … + (31985 + 31987 + 31989 + 31991).
= 3 x (1 + 32 + 34 + 36) + … + 31985 x (1 + 32 + 34 + 36).
= 3 x 820 + … + 31985 x 820= 3 x 20 x 41 + … + 31985 x 20 x 41.
= 41 x ( 3 x 20 + .. + 31985 x 20)
Vì B =41 x ( 3 x 20 + .. + 31985 x 20) nên B chia hết cho 41
B= 3 + 33 + 35 + … + 31991= (3 + 33 + 35) + (37+ 39 + 311 ) + … + (31987 + 31989 + 31991).
= 3 x (1 + 32 + 34) + 37 x (1 + 32 + 34) + … + 31987 x (1 + 32 + 34).
= 3 x 91 + 37 x 91 + … + 31987 x 91= 3 x 7 x 13 + 37 x 7 x 13 + … + 31987 x 7 x 13.
= 13 x ( 3 x 7 + 37 x 7 + … + 31987 x 7).
Vì B = 13 x ( 3 x 7 + 37 x 7 + … + 31987 x 7) nên B chia hết cho 13.
B= (3 + 33 + 35 + 37) + … + (31985 + 31987 + 31989 + 31991).
= 3 x (1 + 32 + 34 + 36) + … + 31985 x (1 + 32 + 34 + 36).
= 3 x 820 + … + 31985 x 820= 3 x 20 x 41 + … + 31985 x 20 x 41.
= 41 x ( 3 x 20 + .. + 31985 x 20)
Vì B =41 x ( 3 x 20 + .. + 31985 x 20)
nên B chia hết cho 41