Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Bùi Thục Nhi

Bài 1. (2,0 điểm) Cho biểu thức:

A = \frac{{\sqrt x  + 1}}{{\sqrt x  - 2}} + \frac{2}{{\sqrt x  + 3}} - \frac{{9\sqrt x  - 3}}{{x + \sqrt x  - 6}} và B = \frac{{x - \sqrt x  + 1}}{{\sqrt x  - 1}}

với x \ge 0;\,x \ne 4;\,x \ne 1

a) Tính giá trị biểu thức B khi x = 9.

b) Rút gọn A

c) Chứng minh rằng khi A > 0 thì B \ge 3

Lấp La Lấp Lánh
7 tháng 2 2022 lúc 20:51

a) \(B=\dfrac{x-\sqrt{x}+1}{\sqrt{x}-1}=\dfrac{9-\sqrt{9}+1}{\sqrt{9}-1}=\dfrac{9-3+1}{3-1}=\dfrac{7}{2}\)

b) \(A=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)+2\left(\sqrt{x}-2\right)-9\sqrt{x}+3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\)

\(=\dfrac{x-3\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}=\dfrac{\sqrt{x}-1}{\sqrt{x}+3}\)

c) \(A=\dfrac{\sqrt{x}-1}{\sqrt{x}+3}>0\Leftrightarrow\sqrt{x}-1>0\left(do.\sqrt{x}+3>0\right)\)

\(\Leftrightarrow\sqrt{x}>1\Leftrightarrow x>1\)

\(B=\dfrac{x-\sqrt{x}+1}{\sqrt{x}-1}=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)+1}{\sqrt{x}-1}=\sqrt{x}+\dfrac{1}{\sqrt{x}-1}\)

Do \(\sqrt{x}>1\Leftrightarrow\sqrt{x}-1>0\)

Áp dụng BĐT Cauchy cho 2 số k âm:

\(B=\sqrt{x}-1+\dfrac{1}{\sqrt{x}-1}+1\ge2\sqrt{\left(\sqrt{x}-1\right).\dfrac{1}{\sqrt{x}-1}}+1=2+1=3\)

Dấu "=" xảy ra \(\Leftrightarrow\left(\sqrt{x}-1\right)^2=1\Leftrightarrow x=4\)


Các câu hỏi tương tự
Ngọc Nhi
Xem chi tiết
binn2011
Xem chi tiết
NGUYỄN NGỌC DIỆU
Xem chi tiết
namdz
Xem chi tiết
Vương Đức Gia Hưng
Xem chi tiết
Hồng Trần
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Triệu Nguyên Anh
Xem chi tiết
Thầy Cao Đô
Xem chi tiết