(Nghệ An)
Cho \(x,y,z\) là ba số dương thỏa mãn điều kiện \(x+y\le z\). Chứng minh rằng
\(\left(x^2+y^2+z^2\right)\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\right)\ge\frac{27}{2}\).
(Hà Tĩnh)
Cho \(x,y\) thỏa mãn điều kiện \(0< x< 1;0< y< 1\). Chứng minh rằng \(x+y+x\sqrt{1-y^2}+y\sqrt{1-x^2}\le\frac{3\sqrt{3}}{2}\).
(Hà Nội)
Cho \(a,b,c\)là ba số dương thỏa mãn điều kiện \(a+b+c+ab+bc+ca=6abc\). Chứng minh rằng \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge3\).
(Hải Phòng)
1) Cho \(a,b\)là hai số dương. Chứng minh rằng
\(3\left(b^2+2a^2\right)\ge\left(b+2a\right)^2\).
2) Cho \(a,b,c\)là ba số dương thỏa mãn điều kiện \(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\ge\frac{1}{2}\). Chứng minh rằng
\(\frac{\sqrt{b^2+2a^2}}{ab}+\frac{\sqrt{c^2+2b^2}}{bc}+\frac{\sqrt{a^2+2c^2}}{ca}\ge\sqrt{3}\).
(Hải Phòng)
1) Cho \(x,y>0\), chứng minh rằng \(\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\).
2) Cho \(a,b,c\) là ba số dương thỏa mãn điều kiện \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=16\). Chứng minh rằng
\(\frac{1}{3a+2b+c}+\frac{1}{a+3b+2c}+\frac{1}{2a+b+3c}\le\frac{8}{3}\).
(Hà Nam)
Cho \(x,y\) là hai số dương thỏa mãn điều kiện \(x+3y\le10\). Chứng minh rằng
\(\frac{1}{\sqrt{x}}+\frac{27}{\sqrt{3y}}\ge10\).
Khi nào xảy ra đẳng thức?
(Lạng Sơn)
Cho \(x,y\) là hai số dương thở mãn điều kiện \(2x+3y=5\). Chứng minh rằng \(\sqrt{xy+2x+2y+4}+\sqrt{\left(2x+2\right)y}\le5\).
(Nghệ An)
Cho \(x,y\) là hai số dương thỏa mãn điều kiện \(x+y\ge3\). Chứng minh rằng
\(x+y+\frac{1}{2x}+\frac{2}{y}\ge\frac{9}{2}\).
Đẳng thức xảy ra khi nào?
(Quảng Bình)
Cho hai số thực \(x,y\) thỏa mãn điều kiện \(x>y\) và \(xy=1\). Chứng minh rằng \(\frac{\left(x^2+y^2\right)^2}{\left(x-y\right)^2}\ge8\).