Chứng minh rằng ∀ a,b,c là các số thực dương ta luôn có :
\(\sqrt{\frac{a}{8b+c}}+\sqrt{\frac{b}{8c+a}}+\sqrt{\frac{c}{8a+b}}\ge1\)
Cho a; b; c là các số dương thoả mãn: \(\sqrt{a}+\sqrt{b}+\sqrt{c}=4\). Chứng minh rằng: \(\frac{1}{2\sqrt{bc}+\sqrt{ab}+\sqrt{ac}}+\frac{1}{\sqrt{bc}+2\sqrt{ca}+\sqrt{ab}}+\frac{1}{\sqrt{bc}+\sqrt{ca}+2\sqrt{ab}}\le\frac{1}{\sqrt{abc}}\)
cho a,b,c là các số thực dương thoả mãn a+b+c=3a+b+c=3
Chứng minh rằng:
\(\sqrt{\frac{a+b}{c+ab}}+\sqrt{\frac{b+c}{a+bc}}+\sqrt{\frac{c+a}{b+ca}}\ge3\)
Cho 3 số dương a, b, c thoã mãn a+b+c=1. Chứng minh rằng:
\(\sqrt{\frac{ab}{c+ab}}+\sqrt{\frac{bc}{a+bc}}+\sqrt{\frac{ca}{b+ac}}\le\frac{3}{2}\)
1)cho a,b,c là các số nguyên dương thỏa mãn đẳng thức \(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}=2\)\(\)chứng minh rằng
\(\frac{a}{1+\frac{b}{a}}+\frac{b}{1+\frac{c}{b}}+\frac{c}{1+\frac{a}{c}}\ge1\)
2)với a,b,c là các số thực dương chứng minh rằng :\(\sqrt{a^2+b^2-3\sqrt{ab}}+\sqrt{b^2+c^2-bc}\ge\sqrt{a^2+c^2}\)
Cho a, b, c là các số thực dương thỏa mãn a + b + c = 1. Chứng minh rằng: \(\frac{\sqrt{a^2+abc}}{c+ab}+\frac{\sqrt{b^2+abc}}{a+bc}+\frac{\sqrt{c^2+abc}}{b+ca}\le\frac{1}{2\sqrt{abc}}\)
Cho a, b, c là các số thực dương thỏa mãn : \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)
Chứng minh rằng \(\sqrt{a+bc}+\sqrt{b+ca}+\sqrt{c+ab}\ge\sqrt{abc}+\sqrt{a}+\sqrt{b}+\sqrt{c}\)
Cho a, b, c là các số thực dương thỏa mãn a + b + c = 3. Chứng minh rằng: \(\sqrt{\frac{a+3}{a+bc}}+\sqrt{\frac{b+3}{b+ca}}+\sqrt{\frac{c+3}{c+ab}}\ge3\sqrt{2}\)
Cho a,b,c là các số thực dương thoả mãn\(a\sqrt{32\left(b^2+c^2\right)}+\left(b+c\right)^2=12\)
chứng minh rằng\(\frac{a^3}{b+3\sqrt{bc}}+\frac{b^3}{c+3\sqrt{ca}}+\frac{c^3}{a+3\sqrt{ca}}\ge\frac{3}{4}\)