Chứng minh nếu ba mặt phẳng phân biệt đôi một cắt nhau theo ba giao tuyến phân biệt thì ba giao tuyến ấy hoặc đồng quy hoặc đôi một song song với nhau.
Số phát biểu đúng
1. Trong không gian qua 1 điểm không nằm trên đường thẳng cho trước, có một và chỉ một đường thẳng song song với đường thẳng đã cho
2. Nếu 3 mặt phẳng đôi một cắt nhau theo 3 giao tuyến phân biệt thì 3 giao tuyến ấy đồng quy
3. Nếu 2 mặt phẳng phân biệt lần lượt chứa 2 đường thẳng song song thì giao tuyến của chúng ( nếu có ) cũng song song với 2 đường thẳng đó hoặc trùng với một trong 2 đường thẳng đó
4. 2 đường thẳng phân biệt cùng song song với đường thẳng thứ 3 thì chúng song song với nhau
5. Nếu đường thẳng d không nằm trong mặt phẳng ( ) và d song song với đường thẳng d’ nằm trong ( ) thì d song song với ( )
6. Cho đường thẳng a song song với mặt phẳng . Nếu mặt phẳng chứa a và cắt theo giao tuyến b thì b song song với a
7. Nếu 2 mặt phẳng cùng song song với 1 đường thẳng thì giao tuyến của chúng ( nếu có ) cũng song song với đường thẳng đó
8. Cho 2 đường thẳng chéo nhau. Có vô số mặt phẳng chứa đường thẳng này và song song với đường thẳng kia.
A. 8
B. 7
C. 6
D. 5
Cho hai mặt phẳng (P), (Q) cắt nhau theo giao tuyến là đường thẳng d . Đường thẳng a song song với cả hai mặt phẳng (P), (Q). Khẳng định nào sau đây đúng?
A. a,d trùng nhau
B. a,d chéo nhau
C. a song song d
D. a,d cắt nhau
Cho đường thẳng d song song với mặt phẳng (∝), mặt phẳng (β) chứa d và cắt (∝) theo giao tuyến d’. Khẳng định nào sau đây là đúng ?
A. d’ // d hoặc d’ ≡ d
B. d’ // d
C. d’ ≡ d
D. d’ và d chéo nhau
Cho ba đường thẳng a, b, c đôi một cắt nhau và không đồng phẳng. số giao điểm của ba đường thẳng là:
A. 3
B. 6
C. 1
D. kết quả khác
Giả sử (P) , (Q), (R) là ba mặt phẳng cắt nhau theo ba giao tuyến phân biệt a, b, c trong đó a = (P) ∩ (R), b = (Q) ∩ (R), c = (P) ∩ (Q). Trong các mệnh đề sau, mệnh đề nào sai?
A. a và b cắt nhau hoặc song song với nhau.
B. ba giao tuyến a, b, c đồng quy hoặc đôi một cắt nhau.
C. nếu a và b song song với nhau thì a và c không thể cắt nhau, b và c không thể cắt nhau.
D. ba giao tuyến a, b, c đồng quy hoặc đôi một song song.
Cho hai đường thẳng a, b cố định, song song với nhau và khoảng cách giữa chúng bằng 4. Hai mặt phẳng (P), (Q) thay đổi vuông góc với nhau lần lượt chứa hai đường thẳng a, b. Gọi d là giao tuyến của (P), (Q). Khẳng định nào sau đây là đúng?
A. d thuộc 1 mặt trụ cố định có khoảng cách giữa đường sinh và trục bằng 4
B. d thuộc 1 mặt nón cố định
C. d thuộc 1 mặt trụ cố định có khoảng cách giữa đường sinh và trục bằng 2 2
D. d thuộc 1 mặt trụ cố định có khoảng cách giữa đường sinh và trục bằng 2
Cho hình chóp S.ABCD có AB và CD không song song. Gọi M là một điểm thuộc miền trong của tam giác SCD.
a) Tìm giao điểm N của đường thẳng CD và mp(SBM).
b) Tìm giao tuyến của hai mặt phẳng (SBM) và (SAC).
c) Tìm giao điểm I của đường thẳng BM và mặt phẳng (SAC).
d) Tìm giao điểm P của SC và mặt phẳng (ABM), từ đó suy ra giao tuyến của hai mặt phẳng (SCD) và (ABM).
CMR
Nếu 2 mặt phẳng cắt nhau lần lượt đi qua 2 đường thẳng song song thì giao tuyến của chúng song song vs 2 đường thẳng đó hoặc trùng 1 trong 2 đường thẳng đó