b, = \(\frac{3^9\cdot3\cdot11+15\cdot3\cdot3^8}{16\cdot3^9}\)
= \(\frac{3^9\cdot33+15\cdot3^9}{16\cdot3^9}\)
= \(\frac{3^9\cdot\left(33+15\right)}{3^9\cdot16}\)
=\(\frac{48}{16}=3\)
a, =\(\frac{\left(3\cdot4\right)^5}{4^3\cdot3^4}\)= \(\frac{3^4\cdot3\cdot4^3\cdot4^2}{4^3\cdot3^4}\)= 3 * 4^2 = 3 * 16 = 48
b, (310*11+38*45)/16*39=3^10*11+3^10*5/16*3^9=3^10*16/3^9*16=3
a, 12^5/64*3^4=2^10*3^5/2^6*3^4=2^4*3=48