tìm nghiệm nguyên của pt : \(x^2+2y^2+2xy+3y-4=0\left(1\right)\)
Tìm nghiệm nguyên của pt: \(x^5+29x=10\left(3y+1\right)\)
tìm nghiệm nguyên của phương trình 4x+6y-5z=10
giải hệ pt: \(\left\{{}\begin{matrix}x^2+2xy-3y^2=-4\\2x^2+xy+4y^2=5\end{matrix}\right.\)
tìm m để phương trình sau có 3 nghiệm phân biệt
\(x^4-4x^3+x^2+6x+m+2=0\) có 3 nghiệm phân biệt x1,x2,x3
chứng minh nếu p nguyên tố thì phườg trình \(x\left(x+1\right)=p^{2012}y\left(y+1\right)\)không có nghiệm nguyên
tìm nghiệm nguyên của phương trình \(3x^2+6y^2+2z^2+3y^2z^2-18x-6=0\)
giải hệ
\(\left\{{}\begin{matrix}4x-2y=3\\6x-3y=5\end{matrix}\right.\)
\(\left\{{}\begin{matrix}2x+3y=5\\4x+6y=10\end{matrix}\right.\)
Giải pt nghiệm nguyên; \(\left(x+y\right)\left(x+y-xy-2\right)=3-2xy\)
tìm nghiệm nguyên của phương trình: x^2 - 2xy + 4x - 3y + 1 = 0
Tìm nghiệm nguyên dương của pt :\(y^3z^2+\left(y^3-2xy\right)z+x\left(x-y\right)=0\)