Tính
1) 5 8 − − 2 5 − 3 10
2) − 5 12 + 4 37 + 17 12 − 41 37
3) − 1 3 − − 3 5 − 1 6 + 1 43 − − 3 7 + − 1 2 − 1 15
4) 3 4 − − 5 3 − 1 12 + 2 9
tính A=1/6-1/39+1/51 / 1/8-1/52+1/68 ; B= 512-512/2-512/2^2-212/2^3-...-512/2^10
Chứng Minh: 1/1.2 + 1/2.3 + 1/3.4 + ... +1/99.100 = 1/51 + 1/52 +1/53 +1/54 +... + 1/100
Tính
1) \(512-\frac{512}{2}-\frac{512}{2^2}-\frac{512}{2^3}-...-\frac{512}{2^{10}}\)
2) \(\frac{1}{3}-\frac{1}{8}-\frac{1}{54}-\frac{1}{108}-\frac{1}{180}-\frac{1}{270}-\frac{1}{378}\)
3)\(3-3^2+3^3-3^4+....+3^{2015}-3^{2016}\)
Cho S = 1/51 + 1/52 + 1/53 + ... + 1/100 . CMR 7/12 < S < 5/6
Tính
A= 512 - 512/2 - 512/2^2 - 512/2^3 - ....- 512/210
E= 1 - 1/10 - 1/15 - 1/3 - 1/28 - 1/6 - 1/21
C= 11/1.3 + 47/3.5 + 107/5.7 + 191/7.9 +...+ 971/17.19
Bài 1: Tính: A=31+33+35+37+...+3111
B=32+34+36+...+3200
C=51+53+55+...+599
D= 52+54+56+...+5100
Bài 2: Chứng minh các phân số sau tối giản với n ϵ N
a) \(\dfrac{2n+1}{n+1}\) b)\(\dfrac{2n+3}{3n+4}\)
1 * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10 * 11 * 12 * 13 * 14 * 15 * 16 * 17 * 18 * 19 * 20 * 21 * 22 * 23 * 24 * 25 * 26 * 27 * 28 * 29 * 30 * 31 * 32 * 33 * 34 * 35 * 36 * 37 * 38 * 39 * 40 * 41 * 42 * 43 * 44 * 45 * 46 * 47 * 48 * 49 * 50 * 51 * 52 * 53 * 54 * 55 * 56 * 57 * 58 * 59 * 60 * 61 * 62 * 63 * 64 * 65 * 66 * 67 * 68 * 69 * 70 * 71 * 72 * 73 * 74 * 75 * 76 * 77 * 78 * 79 * 80 * 81 * 82 * 83 * 84 * 85 * 86 * 87 * 88 * 89 * 90 * 91 * 92 * 93 * 94 * 95 * 96 * 97 * 98 * 99 * 100 bằng bao nhiêu?
B1 a) A=5+53+55+57+..........+5101
b)B=1-1/72-1/73+..........+1/2016
B2 Chứng minh rằng 1/6<1/52+1/62+....+1/1002
B3 Chứng minh rằng 1/n3<1/(n-1)n(n+1)