B1)Tứ giác ABCD có AD=BC, các tia DA và CB cắt nhau tại O. Gọi I, K theo thứ tự là trung điểm của AB, CD. Đường thẳng IK cắt các đường thẳng AD, BC theo thứ tự ở E,F. CMR; OEF là tam giác cân
B2) Hình thang ABCD (AB//CD) có AB=a, CD=b, BC= c, AD= d. Các tia phân giác của các góc A và D cắt nhau ở E. Các tia phân giác của các góc B và C cắt nhau ở F. Gọi M, N theo thứ tự là trung điểm của AD, BC.
a)CMR: 4 điểm M, E, F, N thẳng hàng
b) Tính các độ dài MN, MF, FN theo a,b,c,d
c) CMR: a+b= c+d thì E trùng với F
B3) Cho hình thang ABCD (AB//CD) có AB= AD+BC. CMR: các tia phân giác của góc C,D cắt nhau tại một điểm trên cạnh AB.
1, Cho tam giác ABC vuông tại A, đường cao AH. Gọi I là trung điểm của AH, đường vuông góc với BC tại C cắt đường thẳng BI tại D. chứng minh AD=DC?
2,Cho tứ giác ABCD, O là giao điểm của 2 đường chéo. Từ một điểm I bất kì trên đường chéo BD ta vẽ đường thẳng song song với đường chéo AC, đường thẳng này cắt các cạnh AB,BC tại P, Q và cắt các tia DA, DC tại S, R.chứng minh:
a, =
B, =*
c, =
3, cho hình thang ABCD (AB//CD) có M là giao điểm của AD và BC, N là giao điểm hai đường chéo. Gọi I, K theo thứ tự là giao điểm của MN với AB, CD. Chứng minh I là trung điểm của AB, K là trung điểm của CD
4, cho tam giác ABC có AB<AC, đường phân giác AD, đường trung tuyến AM. Trên cạnh AC lấy điểm E sao cho AE=AB. gọi O, G theo thứ tự là giao điểm của BE với AD, AM.
a, chứng minh DG//AB
b, gọi I là giao điểm của MO với DG. chứng minh DG=IG
5, cho tam giác ABC có AB=5 cm, AC=7 cm, đường trung tuyến AM. lấy điểm E thuộc cạnh AB, điểm F thuộc cạnh AC sao cho AE=AF= 3 cm. gọi I là giao điểm của EF và AM .chứng minh I là trung điểm của AM
1) Cho hình thang ABCD (AB//CD), I là trung điểm của BD, kéo dài về phía B, M và N theo thứ tự là trung điểm của AB, CD. Gọi E là giao điểm của AB, CD; F là giao điểm IN và BC. CM:
a) EF//AB
b)MN là phân giác góc ENF nếu ABCD là hình thang cân
2) Cho tam giác ABC, đường thẳng song song với trung tuyến AD, vẽ điểm P trên BC cắt AB và AC tại M và N. So sánh AM/AB và AN/AC. Tính tỉ số PM/AD. Cm PN+PM=2DA
1, Cho tam giác ABC vuông tại A, đường cao AH. Gọi I là trung điểm của AH, đường vuông góc với BC tại C cắt đường thẳng BI tại D. chứng minh AD=DC?
2,Cho tứ giác ABCD, O là giao điểm của 2 đường chéo. Từ một điểm I bất kì trên đường chéo BD ta vẽ đường thẳng song song với đường chéo AC, đường thẳng này cắt các cạnh AB,BC tại P, Q và cắt các tia DA, DC tại S, R.chứng minh:
A, IP/OA=IB/OB
B, IP/IS=IB/ID*OD/OB
C, IP/IS=IQ/IR
3, cho hình thang ABCD (AB//CD) có M là giao điểm của AD và BC, N là giao điểm hai đường chéo. Gọi I, K theo thứ tự là giao điểm của MN với AB, CD. Chứng minh I là trung điểm của AB, K là trung điểm của CD
4, cho tam giác ABC có AB<AC, đường phân giác AD, đường trung tuyến AM. Trên cạnh AC lấy điểm E sao cho AE=AB. gọi O, G theo thứ tự là giao điểm của BE với AD, AM.
a, chứng minh DG//AB
b, gọi I là giao điểm của MO với DG. chứng minh DG=IG
5, cho tam giác ABC có AB=5 cm, AC=7 cm, đường trung tuyến AM. lấy điểm E thuộc cạnh AB, điểm F thuộc cạnh AC sao cho AE=AF= 3 cm. gọi I là giao điểm của EF và AM .chứng minh I là trung điểm của AM
1) Cho tam giác ABC, gọi I và K lần lượt là hình chiếu của A trên phân giác góc B và góc C. Cm: IK//BC
2) Cho tứ giác ABCD. Gọi M,N lần lượt là trung điểm AB, CD. Cm: MN < (AD+BC)/2
3) Cho tam giác ABC (AB<AC) trên AB lấy M, AC lấy N sao cho BM=CN. Gọi I và K lần lượt là trung điểm MN, BC. IK cắt AB, AC tại P, Q. Cm: góc BPM = góc AQM
1, cho tam giac cân ABC(AB=AC),trung tuyến BM và CN cắt nhau tại G(M thuộc AB, N thuộc AC).gọi EF lần lươt là trung điểm của BG và CG
cm:a) MN=EF
b) cm tứ giác BMNC và BEFC là hình thang cân
2, cho tam giác ABC vuông tại A, góc B=60độ ,kẻ tia Ax// BC.trên tia Ax lấy điểm D sao cho AD=DC
a) tinh cac góc BAD và DAC
b) cm ABCD là hình thang cân
3, cho tam giác ABC vuông tại A(AB<AC),trung tuyến AM đường cao AH.trên tia đối của MA lấy điểm D sao cho MD=MA,trên tia đôi của tia HA, lây điểm I sao cho HA=HI
a)cm BC=ID
b) BIDC là hinh thang cân
4, cho hình thang ABC(AB//CD)có ACD=BDC.cm: ABCD là hình thang cân
giúp mik với
đang cân gấp. cảm ơn rất nhiều
1, cho tam giac cân ABC(AB=AC),trung tuyến BM và CN cắt nhau tại G(M thuộc AB, N thuộc AC).gọi EF lần lươt là trung điểm của BG và CG
cm:a) MN=EF
b) cm tứ giác BMNC và BEFC là hình thang cân
2, cho tam giác ABC vuông tại A, góc B=60độ ,kẻ tia Ax// BC.trên tia Ax lấy điểm D sao cho AD=DC
a) tinh cac góc BAD và DAC
b) cm ABCD là hình thang cân
3, cho tam giác ABC vuông tại A(AB<AC),trung tuyến AM đường cao AH.trên tia đối của MA lấy điểm D sao cho MD=MA,trên tia đôi của tia HA, lây điểm I sao cho HA=HI
a)cm BC=ID
b) BIDC là hinh thang cân
4, cho hình thang ABC(AB//CD)có ACD=BDC.cm: ABCD là hình thang cân
giúp mik với
đang cân gấp. cảm ơn rất nhiều
Bài 1: Cho hình thang ABCD (AB//CD) trong đó đáy CD bằng tổng hai cạnh bên BC và AD.Hai đường phân giác của hai góc A,B cắt nhau tại K.Chứng minh C,D,K thẳng hàng.
Bài 2: Cho tam giác ABC trong đó AB<AC.Gọi H là chân đường cao kẻ từ đỉnh A. M,N,P lần lượt là trung điểm các cạnh AB,AC,BC. C/m tứ giác NMPH là hình thang cân.
Bài 3: Cho tứ giác ABCD có AD=BC. M,N lần lượt là trung điểm của AB,DC.Đường thẳng AD cắt đường thẳng MN tại E.Đường thẳng BC cắt MN tại F.C/m góc AEM=BFM