\(B=1+\frac{1}{1.2}+\frac{1}{2.3}+.....+\frac{1}{99.100}.\)
\(B=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+........+\frac{1}{99}+\frac{1}{100}\)
\(B=1+1-\frac{1}{100}=2-\frac{1}{100}\)
\(B=\frac{199}{100}\)
\(C=\frac{1}{1.2}+\frac{1}{2.3}+........+\frac{1}{n\left(n+1\right)}\)
\(C=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.......+\frac{1}{n}-\frac{1}{n+1}\)
\(C=1-\frac{1}{n+1}\)
\(C=\frac{n+1-1}{n+1}=\frac{n}{n+1}\)
Áp dụng công thức tình dãy số ta có :
\(D=\frac{\left[\left(n-1\right):1+1\right].\left(n+1\right)}{2}=\frac{n.\left(n+1\right)}{2}\)