=>3B=1+1/3+1/3^2+...+1/3^2019
=>3B-B=(1+1/3+1/3^2+...+1/3^2019)-(1/3+1/3^2+1/3^3+...+1/3^2020)
<=>2B=1-1/3^2020= \(\frac{3^{2020}-1}{3^{2020}}\)
\(\Rightarrow B=\frac{3^{2020}-1}{3^{2020}.2}\)
#)Giải :
\(B=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2020}}\)
\(3B=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2019}}\)
\(3B-B=2B=\left(1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2019}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2020}}\right)\)
\(2B=1-\frac{1}{3^{2020}}\)
\(B=\frac{1-\frac{1}{3^{2020}}}{2}\)