B = \(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\)
\(\Rightarrow\)3B = \(1+\frac{1}{3}+...+\frac{1}{3^{98}}\)
Lấy 3B - B = \(\left(1+\frac{1}{3}+...+\frac{1}{3^{98}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\right)\)
2B = \(1-\frac{1}{3^{99}}\)
B = \(\left(1-\frac{1}{3^{99}}\right):2\)
= \(\left(1-\frac{1}{3^{99}}\right).\frac{1}{2}\)
= \(1.\frac{1}{2}-\frac{1}{3^{99}}.\frac{1}{2}\)
= \(\frac{1}{2}-\frac{1}{3^{99}.2}< \frac{1}{2}\)
\(\Rightarrow B< \frac{1}{2}\left(đpcm\right)\)