a+x/a^2x + x+b/x^2b + b+a/b^2a
bài 2 : thu gọn đa thức
a .(2a - b) . (b+ 4a) + 2a . (b-3a)
b . (3a - 2b) . (2a-3b) - 6a x (a-b)
c , 5b . (2x - b) - (8b-x) . (2x - b)
d , 2x . (a + 15x) + (x - 6a) . (5a + 2x)
Quy đồng mẫu các phân thức sau:(có thể tính luôn càng tốt ạ)
a) \(\dfrac{a+x}{a^2x}\);\(\dfrac{x+b}{x^2b}\);\(\dfrac{b+a}{b^2a}\)
b) \(\dfrac{a-x}{6x^2-ax-2a^2}\);\(\dfrac{a+x}{3x^2+4ax-4a^2}\)
c) \(\dfrac{1-2x}{2x}\) + \(\dfrac{2x}{2x-1}\) + \(\dfrac{1}{2x-4x^2}\)
Mn giúp mik vs nhaaa! Tầm trc cmai nhoaaa!
Thanks mn trc ạ!!!
: Viết các biểu thức sau dưới dạng của đa thức:
a) (2a-b) (b+4a) + 2a (b-3a)
b) (3a-2b) (2a-3b) - ba (a-b)
c) 5b (2x-b) - (8b-x) (2x-b)
d) 2x (a+15x) + (x-6a) (5a+2x)
Viết các biểu thức sau dưới dạng đa thức:
a) (2a-b)(b+4a)+2a(b-3a)
b) (3a-2b)(2a-3b)-6a(a-b)
c) 5b(2x-b)-(8b-x)(2x-b)
d) 2x(a+15x)+(x-6a)(5a+2x)
Tính giá trị biểu thức
Q= ( x -a / x - b )3 - x2 - 2a + b / x + a -2b với x= a + b /2
P=x + 2a / x - 2a + x + 2b / x - 2b với x = 4ab / a +b
Bài 1 : Phân tích đa thức thành nhân tử :
a) 3x^2 + 5x -2
b) x^2 - 10xy + 9y^2
Bài 2 : Cho hình thoi ABCD có góc B tù. Kẻ BM và BN lần lượt vuông góc với các cạnh AD, CD tại M và N, biết rằng MN / DB = 1 / 2 .Tính các góc của hình thoi ABCD.
Bài 3 : Chứng minh rằng : a. Nếu (a+b+c)^2 = 3.(ab+bc+ca) thì a = b = c.
b. Nếu 2y + 2z - x / a = 2z + 2x - y / b = 2x + 2y - z / c và (a;b;c; 2b+2c -a ; 2c+2a-b ; 2a+2b-c đều khác 0), thì x / 2b+2c-a = y / 2c+2a-b = z / 2a+2b-c.
Phân tích đa thức sau bằng phương pháp nhóm hạng tử
1) x ( a - b ) + a - b ; 2) x - y - a( x - y ) ; 3) a( x + y ) - x - y ; 4) x( a - b ) - a + b ; 5) x\(^2\) + xy - 2x - 2y
6) 10ax - 5ay + 2x - y ; 7) 2a\(^{^2}\) x - 5by - 5a\(^2\) y + 2bx ; 8) 2ax\(^2\)- bx\(^2\) - 2ax + bx + 4a - 2b ; 9) 2ax - bx + 3cx - 2a + b - 3c
10) ax - bx - 2cx - 2a + 2b + 4c
Phân tích đa thức sau thành nhân tử bằng pp nhóm hạng tử chung:
a) (a - b)(a + 2b) - (b- a)(2a - b) - (a - b)(a + 3b)
b) (x + y)(2x - y) + (2x - y)(3x - y) - (y - 2x)
c) x2(y - z) + y2(z - x) + z2(x - y)