a)
a) n2−3n+5 : n−2 = n - 1 (R=3) . Để phép chia hết nên suy ra: n-1 thuộc Ư(3) . Suy ra : n = { 4 ; -2 ; 0 ; 2 }
a)
a) n2−3n+5 : n−2 = n - 1 (R=3) . Để phép chia hết nên suy ra: n-1 thuộc Ư(3) . Suy ra : n = { 4 ; -2 ; 0 ; 2 }
Cho a+b+c=0 CMR:\(2\left(a^5+b^5+c^5\right)=5abc\left(a^2+b^2+c^2\right)\)
Cho a + b + c= 0 CMR: \(2\left(a^5+b^5+c^5\right)=5abc\left(a^2+b^2+c^2\right)\)
Cho a+b+c=0 CMR: \(2\left(a^5+b^5+c^5\right)=5abc\left(a^2+b^2+c^2\right)\)
B1.a) Tìm n để đa thức \(\left(x^4-x^3+6x^2-x+n\right)⋮\left(x^2-x+5\right)\)
b) Tìm tất cả các số nguyên n để \(\left(2n^2+n-7\right)⋮\left(n-2\right)\)
B2. cmr
a) \(x^2-x+1>0\forall x\)
b) \(-x^2+4x-5< 0\forall x\)
c) a(2a-3)-2a(a+1) chia hết cho 5 với a là số nguyên
Cho \(a+b+c=0\).CMR
a) \(a^3+b^3+c^3=3abc\)
b) \(2\left(a^5+b^5+c^5\right)=5abc\left(a^2+b^2+c^2\right)\)
c) \(\left(a^2+b^2+c^2\right)=2\left(a^4+b^4+c^4\right)\)
1)Cho các số nguyên a,b,c thỏa mãn a+b+c=0.
CMR
a)a3+b3+c3 chia hất cho 3abc
b)a5+b5+c5 chia hết cho 5abc
2)CMR a2+b2chia hết cho 3 thì a và b chia hết cho 3
CMR a2+b2chia hết cho 7 thì a,b chia hết cho 7
3)CMR
a)A=9n3+36n2+48n+5 khoongchia hết cho 343
b)B=4n3+6n2+3n+38 không chia hết cho 125
Tìm số tự nhiên n thỏa mãn :
\(a,5\left(2-3n+42+3n\right)\ge0\)
\(b, \left(n+1\right)^2-\left(n-2\right)\left(n+2\right)\le1,5\)
Cho a,b,c là các số thực dương thỏa mãn \(a^2+b^2+c^2=1\)
CMR: \(\frac{a^5+b^5}{ab\left(a+b\right)}+\frac{b^5+c^5}{bc\left(b+c\right)}+\frac{c^5+a^5}{ca\left(c+a\right)}\ge3\left(ab+bc+ca\right)-2\)
1. Cho \(a\ge5;ab\ge10\). Tính giá trị nhỏ nhất của biểu thức P=\(a^2+b^2\)
2. a) cho a, b là các số tự nhiên. cmr: \(M=a^5+b^5-\left(a+b\right)⋮5\)
b) Tìm x, y thỏa mãn: \(x^2+y^2-4x-2y+5=0\)
c) Giải phương trình: \(x^4-11x^2+4x+21=0\)
3. Chứng minh \(a^2+b^2+c^2\ge ab+bc+ca\) và \(\left(a+b+c\right)^2\ge3\left(ab+bc+ac\right)\)với mọi số thực a, b, c