a/ gọi n^2+2006=a^2(a thuộc Z)
=>2006=a^2-n^2
=>2006=(a-n)(a+n)
vì tích a-n và a+n là 1 số chẵn nên trong 2 số a-n và a+n phải có ít nhất 1 số chẵn(1)
mặt khác, (a-n)+(a-n)=2a
2a là 1 số chẵn nên a-n và a+n có cùng tính chăn lẻ(2)
từ (1) và (2) suy ra a-n và a+n đều là 2 số chẵn
đặt a-n=2x;a+n=2y(x,y thuộc Z)
=>(a-n)(a-n)=2006 hay 2x.2y=2006
=>4xy=2006
vì x,y thuộc Z nên 2006 chia hết cho 4( vô lí, vì 2006 ko chia hết cho 4)
vậy ko có số nguyên nào thõa mãn đề bài
b, vì n là số nguyên tố và n>3 nên n ko chia hết cho 3=>n=3k+1 hoặc n=3k+2
nếu n=3k+1,khi đó: n^2+2006=(3k+1)^2+2006=9k^2+6k+2007 chia hết cho 3 và n^2+2006 lớn hơn 3 nên n^2+2006 là hợp số
nếu n=3k+2, khi đó: n^2+2006=(3k+2)^2+2006=9k^2+12k+2010 chia hết cho 3 và lơn hơn 3 nên n^2+2006 là hợp số
vậy nếu n>3 thì n^2+2006 là hợp số