2n - 1 ⋮ n + 3
=> 2n + 6 - 7 ⋮ n + 3
=> 2(n + 3) - 7 ⋮ n + 3
có 2(n+3) ⋮ n + 3
=> 7 ⋮ n + 3
=> n + 3 thuộc Ư(7)
=> ...
b, (x+1)(y-2) = -5
=> x + 1; y - 2 thuộc Ư(-5)
xét bảng :
x+1 | -1 | 1 | -5 | 5 |
y-2 | -5 | 5 | -1 | 1 |
x | -2 | 0 | -5 | 4 |
y | -3 | 7 | 1 | 3 |
2n-1\(⋮\)n+3
+)Theo bài ta có 2n-1\(⋮\)n+3(1)
+)Ta có n+3\(⋮\)n+3
=>2.(n+3)\(⋮\)n+3
=>2n+6\(⋮\)n+3(2)
Từ (1) và (2) suy ra (2n+6)-(2n-1)\(⋮\)n+3
=>2n+6-2n+1\(⋮\)n+3
=>7\(⋮\)n+3
=>n+3\(\in\)Ư(7)={-1;-7;1;7}
Ta có bảng:
n+3 | -1 | -7 | 1 | 7 |
n | -4\(\in\)Z | -10\(\in\)Z | -2\(\in\)Z | 4\(\in\)Z |
Vậy n\(\in\){-4;-10;-2;4}
b)(x+1).(y-2)=-5
=>-5\(⋮\)y-2
=>y-2\(\in\)Ư(-5)={-1;-5;1;5}
Ta có bảng:
y-2 | -1 | -5 | 1 | 5 |
x+1 | 5 | 1 | -5 | -1 |
y | 1 | -3 | 3 | 7 |
x | 4 | 0 | -6 | -2 |
Vậy cặp (y,x)\(\in\){(1;4);(-3:0);(3;6);(7;-2))
Chúc bn học tốt