Giải các phương trình sau
a) \(25\sqrt{\frac{a-3}{25}}-7\sqrt{\frac{4a-12}{9}}-7\sqrt{a^2-9}+18\sqrt{\frac{9a^2-81}{81}}=0\)
b)\(\sqrt{18x+9}-\sqrt{8x+4}+\frac{1}{3}\sqrt{2x+1}=4\)
Giải phương trình: \(5\sqrt{\frac{9x-27}{25}}-7\sqrt{\frac{4x-12}{9}}-7\sqrt{x^2-9}+18\sqrt{\frac{9x^2-81}{91}}=0\)
Giải phương trình : \(25\sqrt{\frac{a-3}{25}}\)--- \(7\sqrt{\frac{4a-12}{9}}\)--- \(7\sqrt{a^2-9}\)+ \(18\sqrt{\frac{9a^2-81}{81}}\)= 0
Áp dụng quy tắc chia hai căn bậc hai , hãy tính :
\(\frac{\sqrt{8^2}}{\sqrt{4^{5.}}\sqrt{2^3}}\)
Rút Gọn
a,\(\sqrt{75}-\sqrt{5\frac{1}{3}}+\frac{9}{2}\sqrt{2\frac{2}{3}}+2\sqrt{27}\)
b,\(\sqrt{48}+\sqrt{5\frac{1}{3}}+2\sqrt{75}-5\sqrt{1\frac{1}{3}}\)
c,\(\left(\sqrt{12}+2\sqrt{27}\right)\frac{\sqrt{3}}{2}-\sqrt{150}\)
d,\(\left(\sqrt{18}+\sqrt{0,5}-3\sqrt{\frac{1}{3}}\right)-\left(\sqrt{\frac{1}{8}-\sqrt{75}}\right)\)
e,\(6\sqrt{\frac{8}{9}}-5\sqrt{\frac{32}{25}}+14\sqrt{\frac{18}{49}}\)
f,\(2\sqrt{\frac{16}{3}}-3\sqrt{\frac{1}{27}}-6\sqrt{\frac{4}{75}}\)
g,\(\left(2\sqrt{\frac{16}{3}}-3\sqrt{\frac{1}{27}}-6\sqrt{\frac{4}{75}}\right)\sqrt{3}\)
h,\(\left(6\sqrt{\frac{8}{9}}-5\sqrt{\frac{32}{25}}+14\sqrt{\frac{18}{49}}\right)\sqrt{\frac{1}{2}}\)
i,\(\frac{1}{2}\sqrt{48}-2\sqrt{75}-\frac{\sqrt{33}}{\sqrt{11}}+5\sqrt{1\frac{1}{3}}\)
j,\(\left(\sqrt{\frac{1}{7}}-\sqrt{\frac{16}{7}}+7\right):\sqrt{7}\)
Rút gọn
1,\(2\sqrt{\frac{16}{3}}-3\sqrt{\frac{1}{27}}-6\sqrt{\frac{4}{75}}\)
2,\(\left(2\sqrt{\frac{16}{3}}-3\sqrt{\frac{1}{27}}-6\sqrt{\frac{4}{75}}\right)\sqrt{3}\)
3,\(\left(6\sqrt{\frac{8}{9}}-5\sqrt{\frac{32}{25}}+14\sqrt{\frac{18}{49}}\right)\sqrt{\frac{1}{2}}\)
4,\(\frac{1}{2}\sqrt{48}-2\sqrt{75}-\frac{\sqrt{33}}{\sqrt{11}}+5\sqrt{1\frac{1}{3}}\)
5,\(\left(\sqrt{\frac{1}{7}}-\sqrt{\frac{16}{7}}+\sqrt{7}\right):\sqrt{7}\)
Tìm giá trị các biểu thức sau bằng cách biến đổi, rút gọn thích hợp:
a) \(\sqrt{\frac{25}{81}.\frac{16}{49}.\frac{196}{9}}\) b) \(\sqrt{3\frac{1}{16}.2\frac{14}{25}.2\frac{34}{81}}\)
c) \(\frac{\sqrt{640}.\sqrt{34,3}}{\sqrt{567}}\) d) \(\sqrt{21,6}.\sqrt{810}.\sqrt{11^2-5^2}\)
1)Chứng minh
\(\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+...+\frac{1}{\sqrt{2015}+\sqrt{2016}}=\sqrt{2016}-1\)
2:Giải Phương trình:
\(\frac{3}{2}\sqrt{4x-8}-9\sqrt{\frac{x-2}{81}}=6\)
Tìm các giá trị của x để căn thức sau có nghĩa:
a) \(\sqrt{4-5x}\)
b) \(\sqrt{\frac{x^2+1}{x-3}}\)
c) \(\sqrt{\frac{x-1}{x^2+2}}\)
d) \(\sqrt{\frac{2x-3}{x-1}}\)
e) \(\frac{\sqrt{2x-3}}{\sqrt{x-1}}\)
2/ Thực hiện phép tính:
a) \(\sqrt{\frac{16}{64}\cdot\frac{144}{9}\cdot\frac{25}{196}}\)
b) \(\left(\sqrt{8}+5\sqrt{2}-\sqrt{20}\right)\sqrt{5}-7\sqrt{10}\)