Áp dụng bất đẳng thức Cauchy tìm max
a) A=-x^2+2x+7
b) B=(x-y)(5-2x+2y)+14
Giúp mình nha mọi người!!!
áp dụng BĐT cô-si để tìm GTNN của
\(y=\frac{x^3+1}{x^2};x>0\)
Áp dụng BĐT Cô-si để tìm GTLN của các biểu thức :
a) \(y=\frac{x}{2}+\frac{18}{x};x>0\)
b) \(y=\frac{x}{2}+\frac{2}{x-1};x>1\)
c) \(y=\frac{3x}{2}+\frac{1}{x+1};x>-1\)
Câu 1: (3đ) Áp dụng hằng đẳng thức tính:
a. A = 2xy mũ 2+x mũ 2 y mũ 4 +1 tại x=2y=16
b. B = x mũ 3 +9x+27x+27 tại x=97
c. (2x+y mũ 2-1)(2x+y mũ 2+1)
Bài 1: Áp dụng hằng đẳng thức
a) ( x^4-2x^2y+y^2) : (y-x^2)
b) (x^2 -2xy^2+y^4) : (x-y^2)
tìm x biết
a, (3x - 5)(2x + 3) - 6x2 = 7
b, x(x - 7 ) - 2x + 14 = 0
Bài 1)tìm Min hay Max
a) G=\(\dfrac{2}{x^2+8}\)
b) H=\(\dfrac{-3}{x^2-5x+1}\)
Bài 2) Tìm Min hay Max
a)D=\(\dfrac{2x^2-16x+41}{x^2-8x+22}\)
b)E=\(\dfrac{4x^4-x^2-1}{\left(x^2+1\right)^2}\)
c)G=\(\dfrac{3x^2-12x+10}{x^2-4x+5}\)
Chứng minh :
a2 + b2 + 1 \(\ge\)ab + a + b
Gợi ý : tách hạng tử và áp dụng BĐT Cô-si
chứng minh nếu các số dương a,b,c có tổng a+b+c=1 thì 1/a+1/b+1/c >=9
áp dụng BĐT cô si hộ