Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Tran Khang

A=\(\left(\sqrt{a}+\frac{b-\sqrt{ab}}{\sqrt{a}+\sqrt{b}}\right):\left(\frac{a}{\sqrt{ab}+b}+\frac{b}{\sqrt{ab}-a}-\frac{a+b}{\sqrt{ab}}\right)\)

a) rút gọn A

b) tính A khi \(a=6-2\sqrt{5}vàb=5\)

Minh Nguyen
15 tháng 8 2020 lúc 19:04

a) \(ĐKXĐ:\hept{\begin{cases}a>0\\b>0\\a\ne b\end{cases}}\)

\(A=\left(\sqrt{a}+\frac{b-\sqrt{ab}}{\sqrt{a}+\sqrt{b}}\right):\left(\frac{a}{\sqrt{ab}+b}+\frac{b}{\sqrt{ab}-a}-\frac{a+b}{\sqrt{ab}}\right)\)

\(\Leftrightarrow A=\frac{a+\sqrt{ab}+b-\sqrt{ab}}{\sqrt{a}+\sqrt{b}}:\left(\frac{a}{\sqrt{b}\left(\sqrt{a}+\sqrt{b}\right)}-\frac{b}{\sqrt{a}\left(\sqrt{a}-\sqrt{b}\right)}-\frac{a+b}{\sqrt{ab}}\right)\)

\(\Leftrightarrow A=\frac{a+b}{\sqrt{a}+\sqrt{b}}:\frac{a\sqrt{a}\left(\sqrt{a}-\sqrt{b}\right)-b\sqrt{b}\left(\sqrt{a}+\sqrt{b}\right)-\left(a+b\right)\left(a-b\right)}{\sqrt{ab}\left(a-b\right)}\)

\(\Leftrightarrow A=\left(\sqrt{a}-\sqrt{b}\right)\cdot\frac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}{a^2-a\sqrt{ab}-b\sqrt{ab}-b^2-a^2+b^2}\)

\(\Leftrightarrow A=\frac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)}{-a\sqrt{ab}-b\sqrt{ab}}\)

\(\Leftrightarrow A=\frac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)}{-\sqrt{ab}\left(a+b\right)}\)

\(\Leftrightarrow A=\frac{-\sqrt{a}-\sqrt{b}}{a+b}\)

b) Thay \(a=6-2\sqrt{5}\)và \(b=5\)vào A ta được :

\(A=\frac{-\sqrt{6-2\sqrt{5}}-\sqrt{5}}{6-2\sqrt{5}+5}=\frac{-\sqrt{\left(\sqrt{5}-1\right)^2}-\sqrt{5}}{1-2\sqrt{5}}=\frac{1-2\sqrt{5}}{1-2\sqrt{5}}=1\)

Vậy ...

Khách vãng lai đã xóa

Các câu hỏi tương tự
Trần ngô hạ uyên
Xem chi tiết
Nguyễn Nhã Thanh
Xem chi tiết
Thân Thùy Dương
Xem chi tiết
Tuấn Nguyễn
Xem chi tiết
Nguyễn Nhã Thanh
Xem chi tiết
Nguyễn Huỳnh Minh Thư
Xem chi tiết
PHAM THANH THUONG
Xem chi tiết
Nguyễn Minh Anh
Xem chi tiết
Lê Thị Khánh An
Xem chi tiết