a, Tính nhanh :
\(\frac{2009\times(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2007}+\frac{1}{2008})}{2008-\left(\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{2006}{2007}+\frac{2007}{2008}\right)}\)
b, Cho \(\text{Q}=2+2^2+2^3+...+2^{10}\). Chứng tỏ rằng \(Q⋮3\).
Không tính hãy chứng minh rằng 2 số A = 2007^2 + 2^2007 và B = 2007 là
hai số nguyên tố cùng nhau .
~Giúp mình nhé ~ ^_^
Giúp mình bài này với
Tính
\(A=\frac{2008+\frac{2007}{2}+\frac{2006}{3}+\frac{2005}{4}+.....+\frac{2}{2007}+\frac{1}{2008}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+.....+\frac{1}{2008}+\frac{1}{2009}}\)
So sánh:\(\frac{1}{2}+\frac{2}{2^2}+\frac{3}{2^3}+...+\frac{n}{2^n}+...+\frac{2007}{2^{2007}}\)với 2.
Ai nhanh và đúng mình tick 6 tick
Mấy bạn giúp mình làm 4 bài sau đây nha. Nếu bạn nào làm vừa nhanh vừa đúng mình sẽ tặng cho bạn đó 1 LIKE!!!
1. Tìm phân số có giá trị nhỏ nhất khác 0 sao cho khi chia phân số này cho mỗi phân số 9/10,15/22 ta được kết quả là các số nguyên.
2. Tính hợp lí:
\(A=\frac{1}{2}.\frac{1}{7}+\frac{1}{7}.\frac{1}{12}+\frac{1}{12}.\frac{1}{17}+...+\frac{1}{2002}.\frac{1}{2007}\)
3. Cho x,y thuộc tập hợp N sao và
\(A=\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{x+z}\)
Chứng minh 1<A<2
4. Tìm tập hợp các số nguyên x để:
\(\frac{3x}{5}:\frac{3x^2+6x}{10}\)có giá trị là số nguyên.
Tính \(\frac{A}{B}\) biết :
A = \(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2007}-\frac{1}{2008}\)
B = \(\frac{1}{1005}+\frac{1}{1006}+\frac{1}{1007}+...+\frac{1}{2007}+\frac{1}{2008}\)
Giúp mình nhé
Tính nhanh:
\(\frac{2009.\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2007}+\frac{1}{2008}\right)}{2008-\left(\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{2006}{2007}+\frac{2007}{2008}\right)}\)
Thánh nào giải được thì làm ơn làm từng bước một nhé
Mong được chỉ giáo
1/ Tìm x biết:\(\left(\frac{1}{x}-\frac{2}{3}\right)^{^{^2}}-\frac{1}{16}=0\)
2/ Cho a ;b là 2 số chính phương lẻ liên tiếp. Chứng minh rằng : (a-1).(b-1) chia hết cho 192
3/ Tính:
[-2008.57+1004.(-86)]:[32.74+16.(-48)]
1+2-3-4+5+6-7-8+9+10-...+2006-2007-2008+2009
1/ Cho \(A=\frac{1}{1.102}+\frac{1}{2.103}+...+\frac{1}{299.400}\)
Chứng minh rằng: \(A=\frac{1}{101}\left[\left(1+\frac{1}{2}+...+\frac{1}{101}\right)-\left(\frac{1}{300}+\frac{1}{301}+...+\frac{1}{400}\frac{ }{ }\right)\right]\)
2/ Tính \(A=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2005^2}\). Chứng minh \(A< 1\)
3/ Cho \(A=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\)
Chứng minh: \(\frac{1}{2}< A< 1\)
GIÚP MÌNH NHA, MÌNH ĐANG CẦN GẤP.MÌNH SẼ TICK AI NHANH NHẤT!!