Cho A=\(\frac{\sqrt{2}-\sqrt{1}}{2+1}\)+\(\frac{\sqrt{3}-\sqrt{2}}{3+2}\)+...+\(\frac{\sqrt{36}-\sqrt{35}}{36+35}\)
Chứng minh: A<\(\frac{5}{12}\)
Cho A =\(\frac{\sqrt{2}-\sqrt{1}}{2+1}+\frac{\sqrt{3}-\sqrt{2}}{3+2}+...+\frac{\sqrt{36}-\sqrt{35}}{36+35}\)
CMR; A<5/12
CMR:
\(A=\frac{\sqrt{2}-1}{2+1}+\frac{\sqrt{3}-2}{3+2}+...+\frac{\sqrt{36}-35}{36+35}< \frac{5}{12}\)
\(A=\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+...+\frac{1}{\sqrt{120}+\sqrt{121}}\)
\(B=1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{35}}\)
Chứng minh B>A
\(A=\sqrt{\frac{36-16\sqrt{5}}{12+2\sqrt{35}}}-\sqrt{\frac{81-36\sqrt{5}}{11+4\sqrt{7}}}\)
cho A= \(\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{120}+\sqrt{121}}\); B = \(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{35}}\)
Chứng minh A<B
cho \(A=\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{120}+\sqrt{121}}\)
\(B=\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{35}}\)
Chứng minh rằng A<B
Rút Gọn A=\(\frac{\left(\frac{1}{4}-\frac{\sqrt{2}}{7}+\frac{3\sqrt{2}}{35}\right)\frac{1}{25}}{\left(\frac{1}{10}+\frac{3\sqrt{2}}{35}-\frac{\sqrt{2}}{5}\right)\frac{5}{7}}\)
B=\(\frac{3+\sqrt{5}}{\sqrt{10}+\sqrt{3+\sqrt{5}}}-\frac{3-\sqrt{5}}{\sqrt{10}+\sqrt{3+\sqrt{5}}}\)
C=\(\frac{3+\sqrt{5}}{\sqrt{2}+\sqrt{3+\sqrt{5}}}-\frac{3-\sqrt{5}}{\sqrt{2}-\sqrt{3-\sqrt{5}}}\)
Chứng minh
\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{4}}+...+\frac{1}{\sqrt{35}}>10\)