tìmn biết n E N biết 2^n + 3^n=5^n
Cho \(A=\frac{1}{5^2}+\frac{2}{5^3}+\frac{3}{5^4}+...+\frac{\text{n}}{5^{\text{n}-2}}+...+\frac{11}{5^{12}}\) với \(\text{n}\in\text{N }\).CMR:\(A< \frac{1}{16}\)
Cho \(A=\frac{1}{5^2}+\frac{2}{5^3}+\frac{3}{5^4}+...+\frac{n}{5^{n+1}}+...+\frac{11}{5^{12}}\)với \(n\in N.\)Chứng minh rằng \(A<\frac{1}{16}\)
\(A=\frac{1}{5^2}+\frac{2}{5^3}+\frac{3}{5^4}+...+\frac{n}{5^{n+1}}+\frac{11}{5^{12}}\)với \(n\in N.\) Chứng minh rằng \(A<\frac{1}{16}\)
Cho A =\(\frac{1}{^{5^2}}\)+\(\frac{2}{5^3}\)+\(\frac{3}{5^4}\)+...+\(\frac{n}{5^{n+1}}\)+...+\(\frac{11}{5^{12}}\)với n thuộc N chứng minh rằng A<\(\frac{1}{16}\)
Cho A=\(\frac{1}{5^2}+\frac{2}{5^3}+\frac{3}{5^4}+...+\frac{n}{5^{n+1}}+...+\frac{11}{5^{12}}\)với n\(\inℕ\).Chứng minh rằng A<\(\frac{1}{16}\)
Giúp mình với, hiện đang cần gấp lắm.
Cho \(A=\frac{1}{5^2}+\frac{2}{5^3}+\frac{3}{5^4}+...+\frac{n}{5^{n+1}}+...+\frac{11}{5^{12}}\)
Chứng minh A<\(\frac{1}{16}\)
tìm số nguyên n để A=\(\frac{n+4}{n+5}+\frac{3}{n+5}\)(\(n\ne-5\)) là một số nguyên .
cho biểu thức A= \(\frac{1}{5^2}\)+\(\frac{2}{5^3}\)+\(\frac{3}{5^4}\)+.....+\(\frac{n}{5^{n+1}}\)+...+\(\frac{11}{5^{12}}\)với n thuộc N
chứng minh rằng:A<\(\frac{1}{16}\)