=> A= \(\frac{3}{2}\) .( \(\frac{1}{5}\) - \(\frac{1}{7}\) + \(\frac{1}{7}\) - \(\frac{1}{9}\) +...+ \(\frac{1}{59}\) - \(\frac{1}{61}\))
=> A=\(\frac{3}{2}\) . (\(\frac{1}{5}\) - \(\frac{1}{61}\) ) => A= \(\frac{3}{2}\). \(\frac{56}{305}\) = \(\frac{84}{305}\) Vậy A= \(\frac{84}{305}\)
\(A=\frac{3}{5.7}+\frac{3}{7.9}+...+\frac{3}{59.61}\)
\(=\frac{3}{2}.\left(\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{59.61}\right)\)
\(=\frac{3}{2}.\left(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{53}-\frac{1}{61}\right)\)
\(=\frac{3}{2}.\left(\frac{1}{5}-\frac{1}{61}\right)\)
\(=\frac{3}{2}.\frac{56}{305}\)
\(=\frac{84}{305}\)