Giải các phương trình sau :
\(a,\frac{2}{2x+1}-\frac{3}{2x-1}=\frac{4}{4x^2-1}\)
\(b,\frac{2x}{x+1}+\frac{18}{x^2+2x-3}=\frac{2x-5}{x+3}\)
\(c,\frac{1}{x-1}+\frac{2x^2-5}{x^3-1}=\frac{4}{x^2+x+1}\)
giúp mik vs mai mik kiểm tra rùi
a) $\frac{x-1}{x}$ - $\frac{1}{x+1}$ = $\frac{2x-1}{x2+x}$
b) (x+2).(5-3x)=0
c)$\frac{5(1-2x)}{3}$ + $\frac{x}{2}$ = $\frac{3(x-5)}{4}$ - 2
d)$(x+2)^{2}$ - (x-1).(x+3) = (2x-4).(x+4)-3
e)$(2x-3)^{2}$ = (2x-3).(x+1)
$\frac{4x+3}{5}$ -$\frac{6x-2}{7}$ =$\frac{5x+4}{3}$ +3
b.
$\frac{x+4}{5}$ -x+4=$\frac{x}{3}$ -$\frac{x-2}{2}$
c.$\frac{5x+2}{6}$ -$\frac{8x-1}{3}$ =$\frac{4x+2}{5}$ -5
d.$\frac{2x+3}{3}$ =$\frac{5-4}{2}$
e. $\frac{5x+3}{12}$ =$\frac{1+2x}{9}$
f.$\frac{7x-1}{6}$ =$\frac{16-x}{5}$
g. $\frac{x-3}{5}$ =6-$\frac{1-2x}{3}$
h. $\frac{3x-2}{6}$ -5=$\frac{3-2(x+7)}{4}$
giúp vs ạ, cần gấp
Giải Phương trình
a, \(\frac{x+4}{2x^2-5x+2}+\frac{x+1}{2x^2-7x+3}=\frac{2x+5}{2x^2-7x+3}\)
b, \(\frac{x^2}{x^2+2x+2}+\frac{x^2}{x^2-2x+2}-\frac{4.\left(x^2-5\right)}{x^4+4}=\frac{322}{65}\)
c, \(\frac{1}{x-1}+\frac{2x^2-5}{x^3-1}=\frac{4}{x^2+x+1}\)
Trình bày cách làm nữa nha
giải phương trình hộ minh nha mấy bạn <3
a) \(\frac{3x-1}{x-1}-\frac{2x+5}{3}+\frac{4}{x^2-2x-3}=1\)
b) \(\frac{5}{x^2+x-6}+\frac{2}{x^2+4x+3}=\frac{-3}{2x-1}\)
c) \(\frac{4x^2+16}{x^2+16}=\frac{3}{x^2+1}+\frac{5}{x^2+3}+\frac{7}{x^2+5}\)
1) Giải các phương trình:
a) \(\frac{x-3}{5}-\frac{2x-1}{10}=\frac{x+1}{2}+\frac{1}{4}\)
b)\(\frac{x+3}{2}-\frac{2-1}{3}-1=\frac{x+5}{6}\)
c)\(\frac{x-1}{4}-\frac{5-2x}{9}=3x-\frac{2}{3}\)
d)\(\frac{2x-1}{4}+\frac{x-3}{3}=\frac{4x-2}{3}-\frac{6x+7}{12}\)
e)\(\frac{3x-2}{5}+\frac{x-1}{9}=\frac{14x-3}{15}-\frac{2x+1}{9}\)
1) \(\frac{X+2}{X+3}+\frac{X-1}{X+1}=\frac{2}{X^2+4X+3}+1\)
2)\(\frac{X+1}{X-2}+\frac{2X-1}{X-1}=\frac{2}{X^2-3X+2}+\frac{11}{2}\)
3) Tìm GTLN CỦA -2X2+4X+3
4)\(\frac{X+1}{X-2}+\frac{X}{X+1}-\frac{2X+5}{X^2-X-2}=2\)
5)\(\frac{2X-1}{X+2}+\frac{X}{X+3}-\frac{2X^2+X+1}{X^2+5X+6}=\frac{-9}{2}\)
1, giải các phương trình sau
a, \(\frac{13}{2x^2+x-21}+\frac{1}{2x+7}=\frac{6}{x^2-9}\)
b, \(\frac{x-3}{x-5}+\frac{1}{x}=\frac{x+5}{x\left(x-5\right)}\)
c, \(\frac{1}{x+2}+\frac{1}{x^2-2x}=\frac{8}{x^3-4x}\)
d, \(\frac{2}{x^2-4}-\frac{1}{x^2-2x}=\frac{4+x}{x\left(x+2\right)}\)