CHỨNG MINH RẰNG\(\frac{51}{2}\cdot\frac{52}{2}\cdot...\cdot\frac{100}{2}=1\cdot3\cdot5\cdot7\cdot...\cdot99\)
Tính nhanh :
\(A=\left(1-\frac{2}{6\cdot7}\right)\left(1-\frac{2}{7\cdot8}\right)\left(1-\frac{2}{8\cdot9}\right)\cdot\cdot\cdot\left(1-\frac{2}{51\cdot52}\right)\)
\(B=\left(1+\frac{1}{1\cdot3}\right)\left(1+\frac{1}{2\cdot4}\right)\left(1+\frac{1}{3\cdot5}\right)\cdot\cdot\cdot\left(1+\frac{1}{99\cdot101}\right)\)
So sánh \(1\cdot3\cdot5\cdot7\cdot...\cdot99\)với \(\frac{51}{2}\cdot\frac{52}{2}\cdot\frac{53}{2}\cdot...\cdot\frac{100}{2}\)
a)A=\(\frac{1}{1\cdot3\cdot5}+\frac{1}{3\cdot5\cdot7}+\frac{1}{5\cdot7\cdot9}+...+\frac{1}{25\cdot27\cdot29}\)
b)\(\left(\frac{1}{1\cdot101}+\frac{1}{2\cdot102}+...+\frac{1}{10\cdot110}\right)\cdot x=\frac{1}{1.11}+\frac{1}{2\cdot12}+...+\frac{1}{100\cdot110}\)
Cho \(A=\frac{1\cdot3\cdot5\cdot...\cdot995\cdot997}{4\cdot6\cdot8\cdot...\cdot998\cdot1000};B=\frac{2\cdot4\cdot6\cdot...\cdot996\cdot998}{5\cdot7\cdot9\cdot...\cdot999\cdot1001}\)So sánh A và B
a, \(\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}+....+\frac{1}{24\cdot25}\)
b, \(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+.....+\frac{2}{99\cdot101}\)
c, \(5\frac{2}{7}\cdot\frac{8}{11}+5\frac{2}{7}\cdot\frac{5}{11}-5\frac{2}{7}\cdot\frac{2}{11}\)
giup minh voi mai nop roi!!!!
\(D=1\cdot3\cdot5-3\cdot5\cdot7+5\cdot7\cdot9-...+97\cdot99\cdot101\)
Tính tổng :
a) \(\frac{1}{3\cdot5\cdot7}+\frac{1}{5\cdot7\cdot9}+\frac{1}{7\cdot9\cdot11}+...+\frac{1}{2013\cdot2015\cdot2017}\)
b) \(\left(1-\frac{1}{2^2}\right)\cdot\left(1-\frac{1}{3^2}\right)\cdot\left(1-\frac{1}{4^2}\right)\cdot...\cdot\left(1-\frac{1}{2017^2}\right)\)
c) \(\left(1-\frac{1}{1+2}\right)\cdot\left(1-\frac{1}{1+2+3}\right)\cdot...\cdot\left(1-\frac{1}{1+2+3+...+2017}\right)\)
tính:
A=\(\frac{1^2}{1\cdot2}\cdot\frac{2^2}{2\cdot3}\cdot\frac{3^2}{3\cdot4}\cdot\frac{4^2}{4\cdot5}...\frac{8^2}{8\cdot9}\cdot\frac{9^2}{9\cdot10}\)
B=\(\frac{2^2}{3}\cdot\frac{^{3^2}}{8}\cdot\frac{4^2}{15}\cdot\frac{6^2}{35}\cdot\frac{7^2}{48}\cdot\frac{8^2}{63}\cdot\frac{9^2}{80}\)