\(A=\frac{2013.2012-1}{2011.2013+2012}\)
\(A=\frac{2013\left(2011+1\right)-1}{2011.2013+2012}\)
\(A=\frac{2013.2011+2013-1}{2011.2013+2012}\)
\(A=\frac{2013.2011+2012}{2011.2013+2012}\)
\(A=1\)
\(A=\frac{2013.2012-1}{2011.2013+2012}\)
\(A=\frac{2013\left(2011+1\right)-1}{2011.2013+2012}\)
\(A=\frac{2013.2011+2013-1}{2011.2013+2012}\)
\(A=\frac{2013.2011+2012}{2011.2013+2012}\)
\(A=1\)
tính nhanh
\(\frac{2013\cdot2012-1}{2011\cdot2013+2012}\)
k=\(\frac{1+\left(1+2\right)+\left(1+2+3\right)+...+\left(1+2+3+...+2013\right)}{2013\cdot1+2012\cdot2+2011\cdot3+...+2\cdot2012+1\cdot2013}\)
\(A=\frac{1\cdot2}{2\cdot2}\cdot\frac{2\cdot3}{3\cdot3}\cdot\frac{3\cdot4}{4\cdot4}\cdot\frac{4\cdot5}{5\cdot5}\cdot.................\cdot\frac{2012\cdot2013}{2013\cdot2013}\)với
\(B=\frac{2012\cdot2013-2012\cdot2012}{2012\cdot2011+2012\cdot2}\)
k=\(\frac{1+\left(1+2\right)+\left(1+2+3\right)+...+\left(1+2+3+...+2013\right)}{2013\cdot1+2012\cdot2+2011\cdot3+...+2\cdot2012+1\cdot2013}\)
K+2003=?
(Các bạn hãy giúp mình trả lời giúp mình bài này mau nhé, bạn nào đúng mình sẽ tick cho)
\(\frac{2012\cdot2011+2012\cdot11+2000}{2013\cdot2011-2011\cdot2012}\)
Không tính cụ thể , hãy sắp xếp các biểu thức sau theo thứ tự giảm dần :
\(\frac{\frac{2010}{2011}}{\frac{2012}{2013}}+\frac{\frac{2011}{2012}}{\frac{2013}{2014}}+\frac{\frac{2012}{2013}}{\frac{2014}{2015}}\)
\(\frac{\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}}{\frac{2012}{2013}+\frac{2013}{2014}+\frac{2014}{2015}}\)
\(\frac{\frac{2010+2011+2012}{2011+2012+2013}}{\frac{2012+2013+2014}{2013+2014+2015}}\)
\(\frac{\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}}{\frac{2012+2013+2014}{2013+2014+2015}}\)
\(\frac{\frac{2010+2011+2012}{2011+2012+2013}}{\frac{2012}{2013}+\frac{2013}{2014}+\frac{2014}{2015}}\)
So sánh:\(\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}+\frac{2013}{2014}\)và\(\frac{2010}{2008}+\frac{2011}{2013}+\frac{2012}{2014}+\frac{2013}{2015}\)
Tính nhanh:
\(A=\frac{2013\cdot2012-1997}{2012\cdot2011+2015}\)
So sánh :
\(\frac{2011}{2012}\)+ \(\frac{2012}{2013}\)với \(\frac{2011+2012}{2012+2013}\)