Áp dụng a/b < 1 => a/b < a+m/b+m (a,b,m thuộc N*)
A = 2007100 + 1/200790 + 1 < 2007100 + 1 + 2006/200790 + 1 + 2006
A < 2007100 + 2007/200790 + 2007
A < 2007.(200799 + 1)/2007.(200789 + 1)
A < 200799 + 1/200789 + 1
A < B
bn soyeon_Tiểu bàng giải lm sai rồi
Áp dụng: nếu \(\frac{a}{b}>1\Rightarrow\frac{a}{b}>\frac{a+m}{b+m}\) (a,b,m\(\in\)N*)
=>\(A=\frac{2007^{100}+1}{2007^{90}+1}>\frac{2007^{100}+1+2006}{2007^{90}+1+2006}\)
mà \(\frac{2007^{100}+1+2006}{2007^{90}+1+2006}=\frac{2007^{100}+2007}{2007^{90}+2007}=\frac{2007\left(2007^{99}+1\right)}{2007\left(2007^{89}+1\right)}=\frac{2007^{99}+1}{2007^{89}+1}=B\)
=>A>B