a=1/3x5+1/5x7+...+1/2003x2005
a=1x2/3x5x2+1x2/5x7x2+...+1x2/2003x2005x2
a=1/2(2/3x5+2/5x7+...+2/2003x2005)
a=1/2x(1/3-1/5+1/5-1/7+...+1/2003-1/2005)
a=1/2x(1/3-1/2005)
a=1/2x2002/6015
a=1001/6015
A = 1/3.5 + 1/5.7 + 1/7.9 + .... + 1/2003.2005
2A = 1/3 - 1/5 + 1/5 - 1/7 + 1/7 - 1/9 + .... + 1/2003 - 1/2005
2A = 1/3 - 1/2005 = 2002/6015
=>A = 1001/6015
\(\frac{1}{2}A=\)\(2\times\left(\frac{1}{3\times5}+\frac{1}{5\times7}+\frac{1}{7\times9}+...+\frac{1}{2003\times2005}\right)\)
\(\Leftrightarrow\frac{1}{2}A=\frac{2}{3\times5}+\frac{2}{5\times7}+\frac{2}{7\times9}+...+\frac{2}{2003\times2005}\)
\(\Leftrightarrow\frac{1}{2}A=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{2003}-\frac{1}{2005}\)
\(\Leftrightarrow\frac{1}{2}A=\frac{1}{3}-\frac{1}{2005}\)
\(\Leftrightarrow\frac{1}{2}A=\frac{2002}{6015}\)
\(\Leftrightarrow A=\frac{1001}{6015}\)