cho A=\(\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot\cdot\cdot\frac{99}{100}\)
CHỨNG MINH \(\frac{1}{15}< a< \frac{1}{10}\)
CHO A = \(\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot\cdot\cdot\frac{99}{100}\)
CHỨNG MINH \(\frac{1}{15}< A< \frac{1}{10}\)
Cho A = \(\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot...\cdot\frac{99}{100}\)
Chứng minh rằng \(\frac{1}{15}< A< \frac{1}{10}\)
Cho M=\(\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot....\cdot\frac{99}{100}\)
N=\(\frac{2}{3}\cdot\frac{4}{5}\cdot\frac{6}{7}\cdot......\cdot\frac{100}{101}\)
a, Tính M\(\times\)N
b, CM M<\(\frac{1}{10}\)
Bài 19, Cho \(A=\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot...\cdot\frac{99}{100}\)
\(B=\frac{1}{10}\)
So sánh A và B
Bài 20, Cho \(A=\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot...\cdot\frac{999}{1000}\)
\(B=\frac{1}{100}\)
So sánh A và B
Bài 21, Cho \(A=\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot...\cdot\frac{2499}{2500}\)
Chứng minh A<\(\frac{1}{49}\)
Bài 20, Cho \(A=\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot...\cdot\frac{99}{100}\)
\(B=\frac{2}{3}\cdot\frac{4}{5}\cdot\frac{6}{7}\cdot...\cdot\frac{100}{101}\)
\(C=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{4}{5}\cdot\frac{6}{7}\cdot...\cdot\frac{98}{99}\)
1/ So sánh A, B, C
2/Chứng minh \(A\cdot C< A^2< \frac{1}{10}\)
3/Chứng minh \(\frac{1}{15}< A< \frac{1}{10}\)
a) \(\left(\frac{11}{4}\cdot\frac{-5}{9}-\frac{4}{9}\cdot\frac{11}{4}\right)\cdot\frac{8}{33}\)
b) \(\frac{-1}{4}\cdot\frac{152}{11}+\frac{68}{4}\cdot\frac{-1}{11}\)
c) \(\frac{-2}{3}\cdot\frac{4}{5}+\frac{2}{3}\cdot\frac{3}{5}\)
d) \(\left(\frac{1}{2}-1\right)\cdot\left(\frac{1}{3}-1\right)\cdot\left(\frac{1}{4}-1\right)\cdot....\cdot\left(\frac{1}{100}-1\right)\)
e) \(\frac{3}{2^2}\cdot\frac{8}{3^2}\cdot\frac{15}{4^2}\cdot...\cdot\frac{8^{99}}{30^2}\)
tính nhanh
a, \(\frac{-2}{5}\cdot\left(\frac{5}{17}-\frac{9}{15}\right)-\frac{2}{5}\cdot\frac{2}{17}+\frac{-2}{5}\)
b, \(\frac{1}{5}\cdot\left(\frac{4}{13}-\frac{9}{11}\right)+\frac{1}{3}\left(\frac{9}{13}-\frac{4}{22}\right)\)
c, \(\left(\frac{1}{2}+1\right)\cdot\left(\frac{1}{3}+1\right)\cdot\left(\frac{1}{4}+1\right)\cdot...\cdot\left(\frac{1}{99}+1\right)\)
d, \(\left(1-\frac{1}{2}\right)\cdot\left(1-\frac{1}{3}\right)\cdot\left(1-\frac{1}{4}\right)\cdot...\cdot\left(1-\frac{1}{100}\right)\)
\(D=\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot......\cdot\frac{99}{100}\) CM D<1/10
\(D=\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot......\cdot\frac{99}{100}\) chứng minh rằng \(D< \frac{1}{10}\)