Ta thấy rằng: \(2^2>1\times2\) , \(3^2>2\times3\),..., \(2011^2>2010\times2011\).
\(\Rightarrow A< \frac{1}{1\times2}+\frac{1}{2\times3}+...+\frac{1}{2010\times2011}=\frac{2-1}{1\times2}+\frac{3-2}{2\times3}+...+\frac{2011-2010}{2010\times2011}\)\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2010}-\frac{1}{2011}\)\(=1-\frac{1}{2011}< 1.\)
Vậy A < 1.