\(A=\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}...\frac{9^2}{9.10}=\frac{1^2.2^2.3^2...9^2}{1.2.2.3.3.4.4...9.10}=\frac{1.2^2.3^2...9^2}{1.2^2.3^2.4^2...10^2}=\frac{1}{10^2}=\frac{1}{100}\)
\(A=\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}...\frac{9^2}{9.10}=\frac{1^2.2^2.3^2...9^2}{1.2.2.3.3.4.4...9.10}=\frac{1.2^2.3^2...9^2}{1.2^2.3^2.4^2...10^2}=\frac{1}{10^2}=\frac{1}{100}\)
tính:
A=\(\frac{1^2}{1\cdot2}\cdot\frac{2^2}{2\cdot3}\cdot\frac{3^2}{3\cdot4}\cdot\frac{4^2}{4\cdot5}...\frac{8^2}{8\cdot9}\cdot\frac{9^2}{9\cdot10}\)
B=\(\frac{2^2}{3}\cdot\frac{^{3^2}}{8}\cdot\frac{4^2}{15}\cdot\frac{6^2}{35}\cdot\frac{7^2}{48}\cdot\frac{8^2}{63}\cdot\frac{9^2}{80}\)
\(\frac{1^2}{1\cdot2}\cdot\frac{2^2}{2\cdot3}\cdot\frac{3^2}{3\cdot4}\cdot\frac{999^2}{999\cdot1000}\)
tính \(A=\)\(\frac{1^2}{1\cdot2}\cdot\frac{2^2}{2\cdot3}\cdot\frac{3^2}{3\cdot4}\cdot\frac{4^2}{4\cdot5}\cdot...\cdot\frac{99^2}{99\cdot100}\)
G=\(\frac{2^2}{1\cdot3}\cdot\frac{3^2}{2\cdot4}\cdot\frac{4^2}{3\cdot5}\cdot\cdot\cdot\cdot\frac{50^2}{49.51}\)
H=\(\left(1-\frac{1}{7}\right)\cdot\left(1-\frac{2}{7}\right)\cdot\left(1-\frac{3}{7}\right)\cdot\cdot\cdot\cdot\cdot\left(1-\frac{10}{7}\right)\)
Giúp mình vs
Tính B=\(\frac{2^2}{1\cdot3}\cdot\frac{3^2}{2\cdot4}\cdot\frac{4^2}{3\cdot5}\cdot...\cdot\frac{2015^2}{2014\cdot2016}\)
Cho \(A=1\cdot3\cdot5\cdot7\cdot...\cdot49\)
\(B=\frac{1\cdot2\cdot3\cdot...\cdot48\cdot49\cdot50}{2\cdot4\cdot6\cdot...\cdot48\cdot50}\)
\(C=\frac{26}{2}\cdot\frac{27}{2}\cdot...\cdot\frac{50}{2}\)
So sánh A,B và C
tinh
\(\frac{2^2}{1\cdot3}\cdot\frac{3^2}{2\cdot4}\cdot...\cdot\frac{50^2}{49\cdot50}\)
tim A=\(\frac{1\cdot3}{2^2}\)\(\cdot\frac{2\cdot4}{3^2}\cdot.......\cdot\frac{19\cdot21}{20^2}\)
\(\left(1+\frac{1}{1\cdot3}\right)\cdot\left(1+\frac{1}{2\cdot4}\right)\cdot\cdot\cdot\cdot\left(1+\frac{1}{2004\cdot2006}\right)\)