A = \(\frac{1}{2}.\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{2014.2015.2016}\right)=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{2014.2015}-\frac{1}{2015.2016}\right)\)=\(\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2015.2016}\right)=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{4062240}\right)=\frac{1}{4}-\frac{1}{8124480}
Nhận xét: \(\frac{2}{1.2.3}=\frac{3-1}{1.2.3}=\frac{1}{1.2}-\frac{1}{2.3}\)
\(\frac{2}{2.3.4}=\frac{4-2}{2.3.4}=\frac{1}{2.3}-\frac{1}{3.4}\)
........................
\(\frac{2}{2014.2015.2016}=\frac{2016-2014}{2014.2015.2016}=\frac{1}{2014.2015}-\frac{1}{2015.2016}\)
=> \(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{2014.2015.2016}=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{2014.2015}-\frac{1}{2015.2016}\)
=> 2.A = \(2.\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{2014.2015.2016}\right)=\frac{1}{1.2}-\frac{1}{2015.2016}
\(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{2014.2015.2016}\)
\(A=\frac{1}{2}.\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{2014.2015.2016}\right)\)
\(A=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{2014.2015}-\frac{1}{2015.2016}\right)\)
\(A=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2015.2016}\right)\)
\(A=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{4062240}\right)\)
\(A=\frac{1}{4}-\frac{1}{8124480}\)
\(\Rightarrow A< \frac{1}{4}\)
~Học tốt~
A = \(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{2014.2015.2016}\)
=> 2A = \(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{2014.2015.2016}\)
2A = \(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{2014.2015}-\frac{1}{2015.2016}\)
2A = \(\frac{1}{1.2}-\frac{1}{2015.2016}\)
A = \(\left(\frac{1}{1.2}-\frac{1}{2015.2016}\right):2\)
MÀ __________________________ < \(\frac{1}{4}\). đpcm