\(A=\frac{1}{18}+\frac{1}{36}+\frac{1}{60}+...+\frac{1}{168}\)
\(\frac{1}{3}A=\frac{1}{54}+\frac{1}{108}+...+\frac{1}{504}\)
\(\frac{1}{3}A=\frac{1}{6.9}+\frac{1}{9.12}+...+\frac{1}{21.24}\)
\(=\frac{1}{6}-\frac{1}{9}+\frac{1}{9}-\frac{1}{12}+...+\frac{1}{21}-\frac{1}{24}\)
\(=\frac{1}{6}-\frac{1}{24}\)
\(=\frac{4-1}{24}=\frac{3}{24}=\frac{1}{8}\)
=> \(A=\frac{1}{8}:\frac{1}{3}\)\(=\frac{3}{8}\)